16 research outputs found

    Detection of genetic hypopituitarism in an adult population of idiopathic pituitary insufficiency patients with growth hormone deficiency.

    No full text
    International audienceIdiopathic pituitary insufficiency (IPI) is diagnosed in 10% of all hypopituitary patients. There are several known and unknown aetiologies within the IPI group. The aim of this study was to investigate an adult IPI population for genetic cause according a screening schedule. From files of 373 GH deficient (GHD) patients on GH replacement 50 cases with IPI were identified. Of the 39 patients that approved to the study, 25 patients were selected for genetic investigation according to phenotype and 14 patients were not further tested, as sporadic isolated GHD (n = 9) and GHD with diabetes insipidus (n = 5) have low probability for a known genetic cause. Genotyping of all coding exons of HESX1, LHX4, PROP1, POU1F1 and GH1 genes were performed according to a diagnostic algorithm based on clinical, hormonal and neuroradiological phenotype. Among the 25 patients, an overall rate of 8% of mutations was found, and a 50% rate in familial cases. Among two sibling pairs, one pair that presented with complete anterior pituitary insufficiency, had a compound heterozygous PROP1 gene mutation (codons 117 and 120: exon 3 p Phe 117 Ile (c349 T>A) and p Arg 120 Cys (c358 C>T)) with a phenotype of very late onset ACTH-insufficiency. In the other sibling pair and in the sporadic cases no mutation was identified. This study suggests that currently known genetic causes are rare in sporadic adult IPI patients, and that systematic genetic screening is not needed in adult-onset sporadic cases of IPI. Conversely, familial cases are highly suspect for genetic causes

    Characterization of brown adipose tissue in the human perirenal depot.

    No full text
    International audienceTo characterize brown adipose tissue (BAT) in the human perirenal adipose tissue depot. Perirenal adipose tissue biopsies were obtained from 55 healthy kidney donors. Expression analysis was performed using microarray, real-time PCR, immunoblotting and immunohistochemistry. Additional studies using human stem cells were performed. UCP1 gene expression analysis revealed a large intra-individual variation in the perirenal adipose tissue biopsies. Both multi- and unilocular UCP1-positive adipocytes were detected in several of the adipose tissue samples analyzed by immunohistochemical staining. Microarray analysis identified 54 genes that were overexpressed in UCP1-positive perirenal adipose tissue. Real-time PCR analysis of BAT candidate genes revealed a set of genes that were highly correlated to UCP1 and a set of three transcription factor genes (PRDM16, PGC1α, and RXRγ) that were highly correlated to each other. RXRγ displayed nuclear immunoreactivity in brown adipocytes and an increased gene expression during brown adipogenesis in human stem cells. Our data provides the first molecular characterization of BAT in the perirenal adipose tissue depot. Furthermore, it highlights the transcription factor RXRγ as a new player in BAT development

    ITIH-5 Expression in human adipose tissue is increased in obesity

    No full text
    Adipocytes secrete many proteins that regulate metabolic functions. The gene inter-α (globulin) inhibitor H5 (ITIH-5) encodes a secreted protein and is known to be expressed abundantly in the placenta. However, using gene expression profiles data we observed high expression of ITIH-5 in adipose tissue. The aim of this study was to test the hypothesis that ITIH-5 is strongly expressed in human adipocytes and adipose tissue, and is related to obesity and clinical metabolic variables. ITIH-5 adipose tissue mRNA expression was analyzed with DNA microarray and real-time PCR, and its association with clinical variables was examined. ITIH-5 protein expression was analyzed using western blot. ITIH-5 mRNA expression was abundant in human adipose tissue, adipocytes, and placenta, and higher in subcutaneous (sc) compared to omental adipose tissue (P < 0.0001). ITIH-5 mRNA and protein expression in sc adipose tissue were higher in obese compared to lean subjects (P < 0.0001 and P < 0.001, respectively). ITIH-5 mRNA expression was reduced after diet-induced weight loss (P < 0.0001). ITIH-5 mRNA expression was associated with anthropometry and clinical metabolic variables. In conclusion, ITIH-5 is highly expressed in sc adipose tissue, increased in obesity, down regulated after weight loss, and associated with measures of body size and metabolism. Together, this indicates that ITIH-5 merits further investigation as a regulator of human metabolism
    corecore