169 research outputs found

    Invisible, scattered, difficult to contact: union challenges and strategies to engage contract workers in developing countries

    Get PDF
    This report is the result of a study of how trade unions can respond to the challenges of dealing with an increasingly flexible and fragmented labour force. A literature study, a survey and open interviews in four countries were carried out to identify how CNV partner unions can support workers who fall outside of their traditional scope. The number of contract workers in many partner countries has increased rapidly over the past five years and is expected to continue growing in the coming years. This report argues that contract workers are the prime group of informal workers who need to be targeted by trade unions. A widespread use of contract labour affects union strength and undermines the ability of (regular) workers to negotiate with their employer. New strategies should be developed to incorporate contract workers within existing union structures and cater to their specific needs. The most immediate problems facing contract workers are related to income and benefits. These issues can be addressed by enhancing the workers’ level of organisation. Established trade unions can provide guidance, training and other forms of support to enhance their capacity to develop organizational structures, management and leadership. Cooperation and partnerships with other civil society organizations are necessary in order to cater for their multiple needs

    Selective decline of 5-HT1A receptor binding sites in rat cortex, hippocampus and cholinergic basal forebrain nuclei during aging

    Get PDF
    The effect of aging on 5-HT1A receptor binding in several forebrain areas associated with the basal forebrain cholinergic system was investigated in rats of 3-, 24- and 30-months-old by receptor autoradiography and biochemical binding assay using [H-3]8-OH-DPAT as a ligand. Autoradiographic measurements demonstrated a marked region-specific decline of ligand binding in: (i) regions of the basal forebrain cholinergic cell groups, i.e. the medial septum, diagonal band nuclei and magnocellular nucleus basalis, (ii) the frontal and parietal neocortex and (iii) the dentate gyrus of the hippocampus. No change or- only a slight decrease of the 5-HT1A receptor density was found in other areas investigated: the CA1 and CA3 sectors of hippocampus, the cingular and perirhinal cerebral cortex and the lateral septum. The autoradiographic findings were substantiated by the biochemical binding assay, which revealed a comparable loss of 5-HT1A receptor in the hippocampus and neocortex at the age of 30 months. The results clearly show that with increasing age the decrement of 5-HT1A receptor binding in the rat forebrain is remarkably region-selective and particularly affects the cholinergic cell groups that innervate cortex and hippocampus. This phenomenon appears to be especially significant in relation to the neuronal substrates underlying the age-related alterations of mood and cognition. (C) 1997 Elsevier Science B.V

    Whole body vibration improves attention and motor performance in mice depending on the duration of the whole-body vibration session

    Get PDF
    BACKGROUND: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice.MATERIAL AND METHODS: A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition - the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure.RESULTS: WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance.CONCLUSION: These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.</p

    Metagenomic analysis of the saliva microbiome with merlin

    Get PDF
    In recent years, metagenomics has demonstrated to play an essential role on the study of the microorganisms that live in microbial communities, particularly those who inhabit the human body. Several bioinformatics tools and pipelines have been developed for the analysis of these data, but they usually only address one topic: to identify the taxonomic composition or to address the metabolic functional profile. This work aimed to implement a computational framework able to answer the two questions simultaneously. Merlin, a previously released software aiming at the reconstruction of genome-scale metabolic models for single organisms, was extended to deal with metagenomics data. It has an user-friendly and intuitive interface, being suitable for those with limited bioinformatics skills. The performance of the tool was evaluated with samples from the Human Microbiome Project, particularly from saliva. Overall, the results show the same patterns reported before: while the pathways needed for microbial life remain relatively stable, the community composition varies extensively among individuals

    Lipocalin 2 contributes to brain iron dysregulation but does not affect cognition, plaque load, and glial activation in the J20 Alzheimer mouse model

    Get PDF
    BackgroundLipocalin 2 (Lcn2) is an acute-phase protein implicated in multiple neurodegenerative conditions. Interestingly, both neuroprotective and neurodegenerative effects have been described for Lcn2. Increased Lcn2 levels were found in human post-mortem Alzheimer (AD) brain tissue, and in vitro studies indicated that Lcn2 aggravates amyloid--induced toxicity. However, the role of Lcn2 has not been studied in an in vivo AD model. Therefore, in the current study, the effects of Lcn2 were studied in the J20 mouse model of AD.MethodsJ20 mice and Lcn2-deficient J20 (J20xLcn2 KO) mice were compared at the behavioral and neuropathological level.ResultsJ20xLcn2 KO and J20 mice presented equally strong AD-like behavioral changes, cognitive impairment, plaque load, and glial activation. Interestingly, hippocampal iron accumulation was significantly decreased in J20xLcn2 KO mice as compared to J20 mice.ConclusionsLcn2 contributes to AD-like brain iron dysregulation, and future research should further explore the importance of Lcn2 in AD

    Maturation of the infant respiratory microbiota, environmental drivers and health consequences: a prospective cohort study

    Get PDF
    Rationale: Perinatal and postnatal influences are presumed important drivers of the early-life respiratory microbiota composition. We hypothesized that the respiratory microbiota composition and development in infancy is affecting microbiota stability and thereby resistance against respiratory tract infections (RTIs) over time. Objectives: To investigate common environmental drivers, including birth mode, feeding type, antibiotic exposure, and crowding conditions, in relation to respiratory tract microbiota maturation and stability, and consecutive risk of RTIs over the first year of life. Methods: In a prospectively followed cohort of 112 infants, we characterized the nasopharyngeal microbiota longitudinally from birth on (11 consecutive sample moments and the maximum three RTI samples per subject; in total, n = 1,121 samples) by 16S-rRNA gene amplicon sequencing. Measurements and Main Results: Using a microbiota-based machine-learning algorithm, we found that children experiencing a higher number of RTIs in the first year of life already demonstrate an aberrant microbial developmental trajectory from the first month of life on as compared with the reference group (0-2 RTIs/yr). The altered microbiota maturation process coincided with decreased microbial community stability, prolonged reduction of Corynebacterium and Dolosigranulum, enrichment of Moraxella very early in life, followed by later enrichment of Neisseria and Prevotella spp. Independent drivers of these aberrant developmental trajectories of respiratory microbiota members were mode of delivery, infant feeding, crowding, and recent antibiotic use. Conclusions: Our results suggest that environmental drivers impact microbiota development and, consequently, resistance against development of RTIs. This supports the idea that microbiota form the mediator between early-life environmental risk factors for and susceptibility to RTIs over the first year of life
    • …
    corecore