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At a glance commentary 55 

What is the current scientific knowledge on this subject? 56 

Factors affecting the risk of respiratory tract infections have been well characterized, however 57 

it is unknown how these factors might impact respiratory microbiota development and thereby 58 

susceptibility to respiratory tract infections (RTIs). Studies in mice suggest that timely 59 

microbial cues contribute to healthy immune development, in turn enforcing the defense against 60 

invading respiratory pathogens. 61 

 62 

What does this study add to the field? 63 

Using a longitudinal study design and high sampling resolution, we characterized the 64 

nasopharyngeal microbiota maturation over the first year of life in 112 infants both during 65 

health (11 sampling moments) and at the moment of RTIs. We observed differences in the 66 

microbial community maturation in children who ultimately became more susceptible to 67 

infections compared to children who were more resistant to infections. These changed dynamics 68 

were related to shifts in the abundance of specific members of the microbiota and environmental 69 

factors that are known to impact susceptibility to RTIs, such as mode of delivery, mode of 70 

feeding, early antibiotic use and crowding. Altered microbiota maturation was evident from the 71 

first month of life on and preceded factual RTIs, strongly suggesting that early-life microbiota 72 

development impacts long-term respiratory health. 73 
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 74 

This article has an online data supplement, which is accessible from this issue's table of content 75 

online at www.atsjournals.org 76 

 77 
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Abstract 81 

Rationale: Perinatal and postnatal influences are presumed important drivers of the early-life 82 

respiratory microbiome composition. We hypothesized that the respiratory microbiome 83 

composition and development in infancy is affecting microbiome stability and thereby 84 

resilience against respiratory tract infections (RTIs) over time. 85 

Objectives: To investigate common environmental drivers, including birth mode, feeding type, 86 

antibiotic exposure and crowding conditions, in relation to respiratory tract microbiota 87 

maturation and stability, and consecutive risk of RTIs over the first year of life. 88 

Methods: In a prospectively followed cohort of 112 infants, we characterized the 89 

nasopharyngeal microbiota longitudinally from birth on (11 consecutive sample moments and 90 

maximum three RTI samples per subject; in total n=1,121 samples) by 16S-rRNA gene 91 

amplicon sequencing.  92 

Measurements and Main Results: Using a microbiota-based machine-learning algorithm we 93 

found that children experiencing a higher number of RTIs in the first year of life demonstrate 94 

an aberrant microbial developmental trajectory already from the first month of life on as 95 

compared to the reference group (0-2 RTIs/year). The altered microbiota maturation process 96 

coincided with decreased microbial community stability, prolonged reduction of 97 

Corynebacterium and Dolosigranulum., enrichment of Moraxella already very early in life, 98 

followed by later enrichment of Neisseria and Prevotella spp. Independent drivers of these 99 

aberrant developmental trajectories of respiratory microbiota members were mode of delivery, 100 

infant feeding, crowding and recent antibiotic use.  101 

Conclusions: Our results suggest that environmental drivers impact microbiota development 102 

and consequently resilience against development of RTIs. This supports the idea that microbiota 103 

form the mediator between early life environmental risk factors for and susceptibility to RTIs 104 

over the first year of life. 105 
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Introduction 109 

Acute respiratory tract infections (RTI) are a leading cause of childhood mortality, being 110 

responsible for ~0.9 million yearly deaths (15.5% of all deaths) worldwide in children <5 years 111 

(1). In addition, these infections are associated with significant morbidity (2) and are a major 112 

reason for antibiotic prescription (3), especially in young children. Although it is still unclear 113 

why one individual is more vulnerable to respiratory infections compared to another, it was 114 

previously hypothesized that - besides environmental and host-related influences - the 115 

respiratory microbiota may modulate susceptibility to disease. 116 

 117 

Directly after birth, the mucosal surfaces of the respiratory tract of neonates are rapidly 118 

colonized with a variety of microbiota, that are swiftly moulded into niche-specific bacterial 119 

communities (4, 5). Over the first months to years of life, these communities are highly dynamic 120 

and heavily influenced by environmental factors, including mode of delivery (4, 6), season (7), 121 

feeding type (8), and antibiotic treatment (9). In previous studies we found that the microbial 122 

composition at the age of six weeks was indicative of microbiota stability and RTI susceptibility 123 

over the first two years of life (10, 11). This finding underscores the importance of direct 124 

postnatal environmental influences and subsequent early microbiota maturation on future 125 

respiratory health. 126 

 127 

The healthy human respiratory microbiome is assumed to stimulate immune maturation (12, 128 

13), promote epithelial integrity (14), and provide colonization resistance (15), thereby 129 

preventing overgrowth and invasion of potential pathogenic bacteria (16). In contrast, 130 

deviations from a healthy bacterial respiratory community composition have been associated 131 

with susceptibility to and/or severity of childhood respiratory diseases, including acute otitis 132 
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media (17, 18), respiratory syncytial virus (RSV) disease (19) and asthma development (20) in 133 

various retrospective and cross-sectional studies (21). 134 

 135 

We here postulate that alterations in the respiratory microbiome development early in life are a 136 

consequence of changes in the abundance of specific bacterial biomarkers species. We 137 

hypothesize that these alterations are controlled by known host-related and environmental 138 

influences, and can ultimately lead to altered microbiota stability, in turn affecting RTI 139 

susceptibility. Therefore, we prospectively investigated the nasopharyngeal microbiota 140 

maturation of 112 unselected, healthy children with frequent, short interval sampling during the 141 

first year of life as well as during RTI episodes. Hereby, we aimed to study respiratory 142 

microbiota development early in life, and investigate its role as potential mediator between 143 

early-life drivers and susceptibility to respiratory infectious disease. 144 

 145 

 146 

Methods 147 

Details on the study design, sample and data collection and bioinformatics/statistical methods 148 

can be found in the online supplement Methods. Data have been deposited in the National 149 

Center for Biotechnology Information GenBank database (accession number: SRP093519). 150 

Study population 151 

We enrolled in total 128 healthy children in an ongoing prospective birth cohort study aiming 152 

to investigate the development of the infant microbiome during health and disease. Of 128 153 

infants, 12 children were lost to follow-up (Figure E1). Details on the trial methods have been 154 

described elsewhere (4). Written informed consent was obtained from both parents. The study 155 
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was approved by the Ethics Committee of Noord Holland, The Netherlands (M012-015, 156 

NH012.394, NTR3986). Sequence data of part of the samples (≤6 months; n=743 samples of 157 

101 children) were used for a study on the role of mode of delivery on respiratory microbiota 158 

acquisition (4). 159 

Data collection 160 

For the current analyses, we included samples and data of 112/116 children who completed the 161 

one-year follow-up and for whom we had ≥8 samples available for further analyses after 162 

laboratory work-up (Figure E1). Home visits were conducted within two hours after birth, at 163 

24 hours, at seven and 14 days, and at one, two, three, four, six, nine, and 12 months of age. 164 

During each home visit, a trained doctor or research nurse obtained a nasopharyngeal swab 165 

according to World Health Organization protocol (22) and completed an extensive survey on 166 

the health status of the child, as well as on the presence or absence of potential risk and 167 

environmental factors related to respiratory disease (4). Next to these regular visits, parents 168 

were asked to contact the study team in case of an active RTI, defined as fever ≥38°C for >6 169 

hours combined with malaise and presence of RTI symptoms. Following, a RTI visit was 170 

planned within 48 hours after start of the fever to collect additional samples and to obtain more 171 

detailed medical information. 172 

16S-rRNA gene amplicon sequencing 173 

Bacterial DNA of the nasopharyngeal samples was isolated, amplicon libraries of the 16S-174 

rRNA gene (V4 region) were generated, and sequencing was executed as previously described 175 

(4, 23). Amplicon pools were paired-end sequenced in eight runs using an Illuminia MiSeq 176 

instrument (Illumina Inc., San Diego, CA, USA). Bioinformatic processing included trimming, 177 

error correction, assembly and 97%-identity clustering of reads into OTUs. Following removal 178 
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of chimeric reads, OTUs were taxonomically annotated using SILVA and BLASTN (Table E1). 179 

We refer to OTUs using maximum genus level annotations, combined with a rank number based 180 

on the abundance of each given OTU. Details on processing and quality control, including the 181 

use of negative controls, are described in the online supplement Methods. After abundance-182 

filtering, a rarefied dataset was generated, and used for downstream analyses (24). -diversity 183 

measures were averaged over 100 rarefactions. β-diversity was assessed using the Bray-Curtis 184 

dissimilarity metric. 185 

Statistical analysis 186 

All analyses were performed in the R version 3.3.0 within R studio version 0.99.902. 187 

Random forest analysis 188 

We hypothesized that the nasopharyngeal microbial succession patterns would be altered in 189 

children who experienced more RTIs during their first year of life. Therefore, we stratified our 190 

population into three groups based on the normal distribution of RTIs over the first year of life 191 

(Figure E2); 39 children with 0-2 RTIs (reference group; n=372 samples), 52 children with 3-192 

4 RTIs (n=496 samples) and 21 children with 5-7 RTIs (n=197 samples). To identify OTUs 193 

characteristic of a healthy microbiota maturation, we regressed the relative abundance of all 194 

576 OTUs against chronological age in the reference group using the randomForest package, 195 

and selected age-discriminatory OTUs using a step-wise backward 10-fold cross validation 196 

procedure, see online supplement Methods and Figure E3A and E3B (24). This selection of 197 

OTUs was subsequently used as input to a random forest model where we regressed the relative 198 

abundance of these OTUs versus chronological age in the reference group. The resulting final 199 

model was then used to predict chronological age, referred to as ‘microbiota age’, in samples 200 

from individuals who experienced 3-4 and 5-7 RTIs and on the group of samples collected 201 
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during RTIs (n=56 samples). To generate accurate microbiota age estimates for the reference 202 

group, we used a 10-fold cross-validation procedure. Relative microbiota age (RMA) was 203 

calculated as follows: relative microbiota age = microbiota age of a given child – microbiota 204 

age of the reference group at similar age as determined by a spline fit (24). As a post-hoc 205 

analysis, we studied the effect of the Moraxella-genus on the performance of the microbiota 206 

age model by excluding the OTUs belonging to the Moraxella-genus from the model while 207 

monitoring the amount of variance explained. 208 

Associations between environmental factors and microbiota parameters 209 

‘Environmental factors’ used in the descriptions of the various models comprises birth mode, 210 

breast feeding until three months of age, day care attendance, presence of siblings >five years 211 

of age, antibiotic treatment in the previous four weeks and season of birth, if not specified 212 

otherwise. If applicable, correction for multiple testing was performed using the Benjamini-213 

Hochberg procedure. 214 

Microbial succession patterns were visualised using non-metric multidimensional 215 

scaling (nMDS; vegan package) based on the Bray-Curtis dissimilarity matrix. We performed 216 

two separate analyses based on permutational multivariate analysis of variance 217 

(PERMANOVA)-tests and the Bray-Curtis dissimilarity matrix, to study the effect of 1) 218 

environmental factors, age and subject, and 2) the number of RTIs experienced in the first year 219 

of life, on the overall bacterial community structure. Permutations were constrained within 220 

subjects to account for repeated measures. This analysis was repeated over 100 rarefactions to 221 

assess the robustness of our results based on one rarefied set. 222 

To complement the group-based analyses, we also assessed the microbial development 223 

at the individual level using an unsupervised clustering approach. The proportion of samples 224 

within each cluster at each time point was visualised using an alluvial diagram, stratified by the 225 

number of RTIs that children experienced over the first year of life. 226 
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 227 

We used separate linear mixed models to assess the associations between (relative) microbiota 228 

age and stability (-/-diversity measures) as dependent variables and 1) environmental factors 229 

and 2) the number of RTIs (fixed effects), while adjusting for age and with the subject-variable 230 

included as a random intercept (lme4 package). In addition, the relationships between 1) 231 

bacterial density and 2) relative abundance (dependent) and sampling moment (fixed) were 232 

assessed using linear mixed models. 233 

 234 

We used smoothing spline analysis of variance (SS-ANOVA; metagenomeseq package) for the 235 

analyses of 1) the differences in abundance of age-discriminatory OTUs between RTI-groups, 236 

and 2) the effects of birth mode and breastfeeding on the nasopharyngeal microbiota, as it 237 

simultaneously tests for the existence and timing of differences in OTU-abundance. To confirm 238 

associations between environmental factors and relative abundance of microbiota in a 239 

multivariable manner, we used the Multivariate Association with Linear Models (MaAsLin) 240 

(R-)package, adjusting for age and with subject as a random effect. 241 

 242 

 243 

Results 244 

Baseline characteristics of the study population 245 

Baseline characteristics of the study population stratified by number of RTIs experienced in the 246 

first year of life can be found in Table E2. 247 

Nasopharyngeal microbiota composition in the first year of life 248 
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A median of 20,670 reads were generated per sample (range 3,911-97,870 reads), which were 249 

binned into a total 576 operational taxonomic units (OTUs; after filtering), representing a total 250 

of 14 bacterial phyla. Firmicutes was the most abundant phylum with a maximum abundance 251 

of 65.4% at day one (mainly Staphylococcus (3), Dolosigranulum (4)  and Streptococcus (5)). 252 

Later, Proteobacteria emerged and became predominant with a maximum abundance of 71.7% 253 

at 12 months of life (mostly Moraxella (1), Haemophilus (6) and Moraxella (7); Figure 1, 254 

Figure 2 and Figure E4). We observed major shifts in nasopharyngeal microbiota composition 255 

between day 0 and day one and between day one and week one (Figure E5). The difference in 256 

microbiota composition between day one and week one coincided with a strong increase in 257 

absolute bacterial abundance, which then increased up to the age of ~1 month, after which it 258 

stabilized (linear mixed model; q<0.001; Figure 3). 259 

Trajectories of microbial development 260 

We aimed to study whether nasopharyngeal microbiota development is different in infants 261 

experiencing more RTIs in the first year of life compared to the low-burden infants. First, we 262 

demonstrated that the microbial community composition was significantly associated with the 263 

number of RTIs experienced in the first year of life (i.e. 1-7 RTIs; categorical), after adjusting 264 

for age, using a PERMANOVA-test (Table E3A; 1.7% of the variance explained, p=0.001). 265 

Subsequently, we stratified the study participants over three groups based on the number of 266 

RTIs they experienced within the first 12 months of life (i.e. 0-2, 3-4 and 5-7 RTIs; Figure E2 267 

and Table E2). To explore the microbial succession patterns at the individual level, we clustered 268 

samples using an unsupervised clustering approach. The proportion of individuals in each 269 

cluster at each time point was then visualised using an alluvial diagram stratified by the number 270 

of RTIs experienced over the first year of life (figure E6). We identified 8 clusters over all time 271 

points, of which the largest four were enriched for Moraxella (1) (MOR1, 38.5% of samples) 272 
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Corynebacterium (2) and Dolosigranulum (4) (CDG, 19.7%), Staphylococcus (3) (STA, 273 

19.4%) and Streptococcus (5) (STR, 8.4%). In concordance with our previous observations, we 274 

found that the CDG-cluster has a much more prominent and prolonged role in the reference 275 

group compared to children who suffered from 5-7 RTIs. Instead, these children appear to ‘skip’ 276 

the CDG-cluster altogether, transitioning directly from the early-life STA-cluster to the MOR1-277 

cluster (figure E6C), the latter of which is typically observed more often at later time points in 278 

the reference cohort (figure E6A). In the children who experience 3-4 RTIs the cluster 279 

distributions at each time point do resemble those of the reference group, although an early rise 280 

of the Haemophilus (6) (HAE)-cluster was noted (figure E6B). 281 

Nasopharyngeal microbiota maturation in relation to susceptibility to RTI and identification of 282 

age-discriminatory taxa 283 

To further assess these differences in microbiota dynamics we used a random forest regression 284 

model. First, we identified age-discriminatory OTUs in the reference group (i.e. 0-2 RTIs; 285 

Figure E3A and 3B) and regressed their relative abundance against chronological age, enabling 286 

us to model healthy microbiota development (65.9% of variance explained, based on 10-fold 287 

cross-validation, 100 repetitions). Then, the model was used to calculate predicted 288 

chronological age or ‘microbiota age’ in children with 3-4 and 5-7 RTIs and in samples taken 289 

during RTIs (58.1% variance explained), subsequently comparing these estimates to 290 

chronological age. We first observed that children with 5-7 RTIs showed an accelerated 291 

microbiota maturation when compared to the reference group from very early in life on (linear 292 

mixed model; p=0.007). A similar, although non-significant trend was observed in children 293 

with 3-4 vs reference group (linear mixed model; p=0.13; Figure 4A). The accelerated 294 

microbiota developmental patterns in children with >2 RTIs were related to an early enrichment 295 

of Moraxella (1) from just after birth on (SS-ANOVA; q=0.007), enrichment of Neisseria, 296 
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Prevotella and Alloprevotella spp. from month two onwards (SS-ANOVA; q≤0.021) and 297 

(prolonged) absence of Corynebacterium (2) and Corynebacterium (80), Dolosigranulum (4) 298 

and Streptococcus (10) (SS-ANOVA; q≤0.039; Figure 4B, Figure E7 and Table E4A). 299 

Subgroup analyses comparing either the 3-4 or 5-7 RTI groups to the reference group yielded 300 

highly similar results (Table E4B and E4C).  301 

To assess whether the above differences were predominantly driven by the Moraxella genus 302 

rather than by the total group of biomarkers species, we assessed the impact of Moraxella spp. 303 

on the performance of the microbiota age model by repeating the analyses including all 304 

biomarker OTUs, except those belonging to the Moraxella-genus. This model, containing 18 305 

OTUs, showed a confined effect of Moraxella spp., with a small reduction of performance in 306 

the reference group (60.9% variance explained) and a slightly improved performance in 307 

children who experienced 3-4 or 5-7 RTIs over the first year of life and in samples taken during 308 

RTI (60.1% variance explained), compared with the model based on 22 OTUs. 309 

Relative microbiota age in relation to (susceptibility to) RTI 310 

By calculating the relative microbiota age (RMA; defined as the difference in microbiota age 311 

between susceptible groups versus the reference group) we verified that microbiota age was 312 

increased in children with 5-7 RTIs compared to the reference group (linear mixed model, 313 

adjusted for age; p=0.007; Figure E8), which was already apparent in the first month of life 314 

(p=0.011; linear mixed model; post-hoc analysis in children 1 month of age). This latter 315 

finding was substantiated by a PERMANOVA-test, demonstrating that the microbiota 316 

composition over the first month of life was significantly associated with the number of RTIs 317 

over the first year of life (Table E3D; 0.8% of the variance explained, p=0.001). The RMA was 318 

not significantly different between the group with 3-4 RTIs and the reference group (p=0.12). 319 

Moreover, although the RMA was maximal during RTIs (median RMA +67.8 days in RTI 320 
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samples), we already observed an increase in RMA during the period preceding the factual RTI 321 

(median RMA +37.1 days at the first time point preceding RTI [T = -1]; p=0.004), suggesting 322 

that the microbiota maturation alterations precede RTIs. After recovery from an RTI, RMA 323 

decreased towards the reference group, though did not normalize (median RMA +29.7 days T 324 

= +1; p=0.04; Figure 4C). Although these changes in RMA appeared to be related to individual 325 

OTUs (figure E9), these changes were not statically significant. 326 

Nasopharyngeal microbiota stability over time 327 

We next investigated whether bacterial community stability over time was different for children 328 

who experienced 0-2, 3-4 and 5-7 RTIs over the first year of life. Community stability, 329 

measured by the Bray-Curtis dissimilarity between consecutive time points, was significantly 330 

different between children with 0-2 RTIs and those with 3-4 and 5-7 RTIs (linear mixed model; 331 

p=0.005 and p=0.02, respectively). This phenomenon was apparent from the age of three 332 

months on (Figure 5). 333 

Impact of environmental drivers on bacterial community composition 334 

We then aimed to assess the effect of environmental factors on nasopharyngeal microbiota 335 

composition and succession. Using PERMANOVA tests, we found that factors with the largest 336 

impact comprised subject (unadjusted R2=18.7%), chronological age (10.4%) and 337 

environmental drivers, including presence of siblings <five years of age (1.6%), day care 338 

attendance (0.9%), season of birth (0.7%), breastfeeding for at least three months (0.5%), birth 339 

mode (0.4%) and antibiotic usage in the previous month (0.3%; all p-values ≤0.016; Table E3B 340 

and E3C). 341 

Environmental drivers and their effects on microbiota maturation, stability and individual 342 

bacterial taxa 343 
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After showing microbiota maturation is accelerated in children more susceptible to RTIs, we 344 

next set out to determine the influence of environmental drivers on this process. We modelled 345 

the RMA using a linear mixed model including environmental factors. We observed that 346 

particularly the presence of young siblings and day care attendance are associated with an 347 

increased RMA early in life (both p<0.0005). Similar associations were found when directly 348 

modelling microbiota age instead of RMA versus environmental drivers (data not shown). In 349 

contrast, the observed differences in microbiota stability between groups could not be explained 350 

by environmental factors (linear mixed model; p>0.05) and did not relate to differences in -351 

diversity measures between groups (linear mixed model; p>0.05, Figure E10). We also did not 352 

detect differences in microbiota stability directly prior to, during or following a RTI episode. 353 

We further tested the contribution of individual bacterial taxa to the associations 354 

between environmental factors and microbiota maturation using MaAslin. With respect to age-355 

discriminatory taxa, we found that Moraxella spp. were positively and Staphylococcus spp. 356 

were negatively associated with day care (both q<0.0005). Furthermore, we found that 357 

Corynebacterium (2) and Dolosigranulum (4) were strongly reduced following antibiotic usage 358 

(q<0.03). Additionally, we observed many associations between environmental drivers and 359 

bacterial taxa that were not previously assigned as age-discriminatory biomarkers. Notably, the 360 

presence of siblings was associated with increased abundance of the family Pasteurellaceae 361 

(q=0.003), which includes the Haemophilus genus (Table E5). 362 

Temporal effects of mode of delivery and feeding type on bacterial taxa 363 

Since MaAsLin is not suited to identify temporary effects and the timeframes within which they 364 

occur, we additionally studied the impact of early life drivers, such as mode of delivery and 365 

feeding type, on the microbial succession patterns using SS-ANOVA. Of the age-366 

discriminatory taxa, early and/or prolonged predominance of Corynebacterium (2), 367 
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Corynebacterium (8) and Dolosigranulum (4) (q≤0.03) and late enrichment of Moraxella spp. 368 

(q<0.05; from ~month 3 on) were associated with vaginal birth and/or breastfeeding. 369 

Contrariwise, in formula fed and/or caesarian born children we observed a high abundance of 370 

Gemella (9) and Streptococcus (10) (q≤0.012) from birth on, and prolonged (4-11 months) 371 

predominance of Neisseria spp. and (facultative) anaerobes including (Allo)prevotella, 372 

Granulicatella and Actinomyces spp. (q<0.05) after the first month of life. Abundance of the 373 

age-discriminatory taxum Staphylococcus (3) was related to birth by caesarian section in the 374 

first month of life only (q=0.016). Besides, although not directly linked to microbiota 375 

maturation, we found that the additional early enrichment of Streptococcus (5) was associated 376 

with caesarian section and/or formula feeding (from birth on; q≤0.026), which could be 377 

confirmed using MaAsLin (Table E5). Additionally, we observed temporal enrichment of oral 378 

type of bacteria including streptococci and facultative anaerobic bacteria like Prevotella, 379 

Porphyromonas and Veillonella spp., in formula fed children (from ~month 1-2 onwards) and 380 

early abundance of Dolosigranulum (4) in breastfed children (Table E6 and E7 and Figure E11 381 

and E12). 382 

 383 

 384 

Discussion 385 

Microbial colonization of the upper respiratory tract occurs directly after birth and develops 386 

rapidly towards niche-specific profiles during the first weeks of life (4, 5, 10, 25). Several cross-387 

sectional case-control studies have shown differences in respiratory microbial profiles between 388 

children with and without acute otitis media (18, 26), and between infants with mild, moderate 389 

and severe RSV (19). Longitudinal studies, linking respiratory microbiota development and 390 
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maturation and (risk of) RTIs, however, are sparse, lack detailed information, and are only 391 

retrospectively executed (10, 20). 392 

 393 

Our results suggest that microbiota maturation in healthy children who experience a limited 394 

number of 0-2 RTIs in the first year of life (reference group), is associated with a specific timing 395 

of colonization events accompanied by the consecutive appearance and disappearance of 396 

specific community members. In general, we observed that during the first week of life, the 397 

microbiota development is typified by a strong increase in absolute bacterial abundance. In the 398 

reference group, this coincides with the initial expansion of Streptococcus spp. at day one, 399 

supplanted by rapid niche-differentiation at one week of life, initially driven by staphylococcal 400 

predominance, but quickly followed by the establishment of multiple Corynebacterium and 401 

Dolosigranulum spp.: a process which is strongly related to vaginal delivery (4) as well as 402 

breastfeeding. Although Moraxella spp. become predominant community members over time 403 

in most children, in the reference group they only become the main community members from 404 

2-3 months of life on. From that age on, Moraxella spp. may still co-occur with 405 

Corynebacterium and Dolosigranulum spp. in a mixed community profile or they can truly 406 

dominate all other community members in a Moraxella spp. dominated community profile (4). 407 

This natural process of consecutive events coincides with normalization of ecological stability 408 

from the age of three months on and fewer infections. 409 

In contrast, children with high susceptibility to RTIs over the first year of life exhibit an 410 

accelerated bacterial community maturation from as early as the first month of life on, i.e. prior 411 

to development of their first RTIs. This pattern was characterised by diminished and less 412 

prolonged establishment of Corynebacterium and Dolosigranulum spp. coinciding with 413 

premature predominance of Moraxella spp. colonization, and more abundant and prolonged 414 

presence of oral types of bacteria in the nasopharyngeal niche, including Neisseria and 415 



 20. 

Prevotella spp. The observed aberrant microbial succession in children with more RTIs also 416 

coincided with decreased bacterial community stability over time, which is in line with previous 417 

observations and support the ecological theory that more stable microbiota are more resistant 418 

to RTIs (10). Interestingly, we could also show that acceleration of microbiota age preceded 419 

the factual RTIs, supporting the hypothesis that microbiota changes forego a clinically 420 

symptomatic RTI. Conjointly, these findings support our hypothesis that the initial early 421 

colonization after birth and subsequent development of URT microbiota over the first months 422 

of life impact respiratory health.  423 

 424 

Our data, in line with others, show that prolonged abundance of Corynebacterium and 425 

Dolosigranulum spp. are linked to healthy microbiota development and microbiota stability 426 

(10, 17, 20, 26), and are related to breastfeeding and vaginal delivery (4, 8, 27). Their co-427 

occurrence may be explained by the ability of Dolosigranulum spp. to produce lactic acid, 428 

which plausibly selects for Corynebacterium spp. outgrowth (21). Antagonism between 429 

Corynebacterium spp., and Streptococcus pneumoniae, a known respiratory pathogen, may at 430 

least in part explain their association with respiratory health (17, 26, 28). Since we and others 431 

(20, 29) showed that antibiotic use in infancy is associated with depletion of Corynebacterium 432 

and Dolosigranulum spp., routinely used antibiotics may therefore have more (prolonged) 433 

consequences for microbiota-driven resilience against RTIs than currently is thought. 434 

Conversely, accelerated microbial succession patterns in children with more RTIs were 435 

characterized by enrichment of Neisseria spp. and (facultative) anaearobic, mainly oral species, 436 

including Prevotella spp., which in turn were linked to formula feeding. Similar findings have 437 

been reported previously (10, 30), and imply a loss of topography within the upper respiratory 438 

tract, suggesting that the host or the local ecosystem is unable to restrain oral microbiota within 439 
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their niche early in life. As presence of these bacteria is linked to RTI susceptibility, further 440 

studies on their role in respiratory health is warranted. 441 

In literature, conflicting results have been reported regarding the role of Moraxella spp. 442 

in the pathogenesis of RTIs. Some studies found that Moraxella spp. colonization was 443 

associated with respiratory infections including pneumonia and bronchiolitis (11), while others 444 

reported that the Moraxella-dominated profile was associated with bacterial community 445 

stability (10, 20) and fewer RTI episodes (10). Although in our study, development from a 446 

Staphylococcus- into a Corynebacterium/Dolosigranulum-, towards a Moraxella-dominated 447 

profile eventually occurs in the great majority of children, we here show that especially lack of 448 

Corynebacterium/Dolosigranulum spp. establishment coincides with a premature transition 449 

from Staphylococcus- towards a Moraxella-dominated profile, which is associated with influx 450 

of oral bacterial species and an increased risk of RTIs (20). In line, several studies in mice have 451 

demonstrated that the neonatal immune system requires cues from the respiratory microbiota 452 

for its development within a specific time frame (12, 13). Indeed, premature Moraxella spp. 453 

colonization is shown to induce a mixed pro-inflammatory immune response (31), although 454 

data on the effects of Moraxella spp. colonization at later age are lacking. In addition, it 455 

deserves further study whether the required microbial triggers might be species and/or strain 456 

specific.  457 

 458 

In our prospective, birth cohort study we collected frequent nasopharyngeal samples of a large 459 

number of healthy children at regular intervals over the first year of life as well as during RTIs, 460 

allowing us to study the microbial development during health, preceding and during RTI 461 

episodes. More importantly, it allowed us to explore microbiota dynamics and drivers of 462 

susceptibility to RTIs. Strengths of our study include the frequency of sampling and the 463 

consistency in data and sample collection by trained doctors and research nurses. We made a 464 
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rigorous effort to minimize the potential effect of environmental contamination on low-density 465 

nasopharyngeal samples collected from children at very early age. Last, we used non-466 

parametric, machine-learning techniques combined with (multivariable) spline-based mixed 467 

models to explore specific age-dependent patterns in microbial succession. 468 

Our study also has limitations. First, parents were asked to contact the research team in 469 

case of a RTI. Therefore, likely not all RTI episodes may have been captured for in depth 470 

analyses. Exhaustive efforts were however made to obtain detailed information on all 471 

experienced RTIs when questionnaires were filled out during regular home visits to minimize 472 

reporting bias in our multivariable analyses (Bosch et al, unpublished data). Second, despite 473 

frequent sampling, our samples capture snapshots of a highly dynamic and developing 474 

microbiome, therefore we can only make assumptions about the dynamics in between sampling 475 

moments. Third, although we observed that microbiota changes seem to forego RTIs and are 476 

associated with RTI susceptibility, our study design precludes any definite statements on 477 

causality. 478 

We here provide evidence that accelerated microbiota maturation is associated with 479 

microbiota instability and number of RTIs over the first year of life. These changed dynamics 480 

could be observed as early as within the first month of age, i.e. prior to the first RTI experiences. 481 

We also were able to link the impact of known important drivers such birth mode, feeding type, 482 

the presence of siblings, early day-care attendance, and recent use of antimicrobial therapy, via 483 

altered microbiota development to susceptibility to RTIs. The potential implications of these 484 

findings for our understanding of pathogenesis of disease, as well as diagnostic and preventive 485 

strategies, deserves further investigation. 486 

487 
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Figure legends 616 

Figure 1 – Microbiota development over the first year of life.  617 

(A) Relative abundance of the 15 highest ranking OTUs over the first year of life (age in days) 618 

and during of RTIs. OTUs are colour coded as indicated in the figure legend, which was based 619 

on their phylum level taxonomic annotation: red, Firmicutes; yellow, Actinobacteria; blue, 620 

Proteobacteria and green, Bacteroidetes. We observed a high abundance of Firmicutes 621 

(Staphylococus (3) and Dolosigranulum (4)) and Actinobacteria (Corynebacterium spp.) early 622 

in life, which was gradually replaced by Proteobacteria (Moraxella (1), Moraxella (7), 623 

Haemophilus (6) and Neisseria spp.). OTUs that were not among the 15 highest ranking were 624 

collapsed and referred to as ‘Residuals’, stratified by phylum for the five most abundant phyla. 625 

(B) Relative abundance of the 15 highest ranking OTUs over the first two months of life. 626 

Visualisation of microbiota profiles per time point allows for a more detailed assessment of 627 

microbial dynamics at early time points. Over the first week of life, a relatively high abundance 628 

of Streptococcus (5), Janthinobacterium (13) and Neisseria spp. and Rothia (12) was observed, 629 

apart from other OTUs belonging mainly to the Firmicutes, Proteobacteria and Actinobacteria 630 

phyla (See Figure E5). d = day; w = week; m = month. 631 

Figure 2 – Non-metric multidimensional scaling (nMDS) plot visualizing the microbiota 632 

succession patterns in the first year of life.  633 

Each point represents the microbial community composition of one sample. Samples taken 634 

during health (n=1,065) are coloured based on the age at which they were taken (colours 635 

ranging from yellow [day 0] to dark green [year 1]). In addition, samples taken during RTI are 636 

depicted (n=56; dark red). The standard deviation of data points within time point/RTI strata is 637 

shown by ellipses. The 15 highest ranked OTUs were simultaneously visualized (triangles). 638 



 28. 

The size of the triangles is relative to the mean relative abundance of the OTU it represents. 639 

The stress value indicates how well the high-dimensional data are captured in the two-640 

dimensional space; a value of ~0.2 indicates that the representation of some points is potentially 641 

misleading and that a representation in a higher dimensional space might be more appropriate 642 

(see Figure E4 for detailed assessment) (32). d = day; w = week; m = month; RTI = respiratory 643 

tract infection. 644 

Figure 3 – Absolute bacterial density over the first year of life.  645 

Boxplots showing the absolute bacterial density (in pg/µL 16S-rRNA-gene) in blanks (n=55; 646 

blue), in samples taken during health at various time points (n=1,065; colours ranging from 647 

yellow [day 0] to dark green [year 1]) and during RTI (n=56; red). Bacterial density is 648 

particularly low at days 0 and 1, then gradually increases until the age of ~1 month, after which 649 

it remained largely stable. Box plots represent the 25th and 75th percentiles (lower and upper 650 

boundaries boxes, respectively), the median (middle horizontal line), and measurements that 651 

fall within 1.5 times the interquartile range (IQR; distance between 25th and 75th percentiles; 652 

whiskers) or outside 1.5 times the IQR (points). Q-values were derived from a linear mixed 653 

model with log10-transformed bacterial density as outcome variable, time point as fixed effect 654 

and subject as a random effect. Only samples taken at regular intervals were considered and 655 

each consecutive time point was compared to the previous time point using the multcomp 656 

package. ***, q-value <0.001; **, 0.001 ≤q-value <0.01. d = day; w = week; m = month; RTI 657 

= respiratory tract infection. 658 

Figure 4 – Microbiota maturation and age-discriminatory taxa stratified by RTI susceptibility. 659 

(A) Microbiota age estimates plotted against chronological age stratified by number of RTIs 660 

experienced during the first year of life. The curves represent smooth spline fits for each cohort. 661 
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P-values are based on a linear mixed model, including age (spline) and number of RTIs (i.e. 0-662 

2, 3-4 or 5-7 RTIs) as fixed effects and subject as random effect. 663 

(B) Heatmap of the mean relative abundance of the 22 age-discriminatory OTUs against 664 

moment of sampling in each cohort. OTUs are ordered vertically based on average linkage 665 

hierarchical clustering using the Euclidean distance matrix. Colours correspond with row wise 666 

normalized relative abundances (i.e. red indicates the maximum relative abundance of that OTU 667 

over all cohorts, black indicates the minimum relative abundance). OTU-names are bold and 668 

coloured green if they were significantly enriched in the reference group (0-2 RTIs) compared 669 

to children with >2 RTIs. Red was used to denote the OTUs that were observed in higher 670 

abundance in children with >2 RTIs (based on SS-ANOVA q-values; see Table 4A). d = day; 671 

w = week; m = month; RTI = respiratory tract infection. 672 

 (C) Relative microbiota age (RMA) before (light green shades), during (red) and after RTI 673 

(dark green). The relative microbiota age two time points before RTI (‘-2’; n=51; on average -674 

104 days to RTI), one time point before RTI (‘-1’; n=47; -50 days to RTI), at RTI (‘RTI’; n=56; 675 

mean age at sampling of 216 days) and after RTI (‘+1’; n=41; +57 days after RTI) is depicted 676 

in boxplots (see legend Figure 2). RMA already increased at time points preceding a factual 677 

RTI (median RMA +7.3 days at T = -2, +37.1 days at T = -1, and +67.8 days at RTI). P-values 678 

are based on a linear mixed model including timing of sampling (i.e. ‘-2’, ‘-1’, ‘RTI’ or ‘+1’) 679 

and age (continuous) as fixed effects and subject as random effect. The contrasts ‘-2’ vs ‘-1’, ‘-680 

1 vs ‘RTI’ and ‘RTI’ vs ‘+1’ were tested (multcomp package). **, 0.001 ≤q-value <0.01; *, 681 

0.01 ≤q-value <0.05.  682 

Figure 5 – Microbiota stability over time stratified by RTI susceptibility.  683 

Bray-Curtis dissimilarities were calculated within each subject between each pair of 684 
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consecutive time points. The bacterial community stability was significantly lower in children 685 

with 3-4 (p=0.005) or 5-7 RTIs (p=0.02) compared to the reference group of children 686 

experiencing 0-2 RTIs within the first year of life. P-values are based on a linear mixed model, 687 

including age (spline) and number of RTIs as fixed effects and subject as random effect. The 688 

shaded area around each smoothing spline represents the 95% confidence interval. 689 

690 
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Legends Online Supplement 691 

 692 

Methods – Online supplement methods. 693 

 694 

Figure E1 – Flow chart study.  695 

Flow chart showing the number of initially enrolled women and the reasons for exclusion of 696 

participants. 697 

Figure E2 – Distribution of respiratory tract infections within the cohort.  698 

Histogram of the number of RTIs versus their frequency. ‘N’ denotes the number of individuals, 699 

‘n’ gives the number of samples. The cohort was divided in RTI groups based on the distribution 700 

of RTIs; each sub cohort corresponds with a tertile. 701 

Figure E3 – OTU selection procedure. 702 

(A) Plot showing the 10-fold cross-validation error (mean ±standard deviation) as a function of 703 

the number of OTUs used to regress against chronological age in the reference cohort (children 704 

with 0-2 RTIs). An optimal trade-off between the mean squared error (MSE; i.e. cross-705 

validation error) and number of OTUs in the model was observed at 22 OTUs. 706 

(B) Age-discriminatory OTUs ranked in descending order based on their importance to the 707 

accuracy of the model. OTU importance was estimated by calculating the increase in mean-708 

squared error (MSE) of the microbiota age prediction after randomly permuting the relative 709 

abundance values of each given OTU (mean ±standard deviation, 100 replicates). 710 

Figure E4 – nMDS diagnostic plots and three-dimensional nMDS. 711 
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(A) Scree plot to depict the relationship between the number of (nMDS)-dimensions and stress. 712 

Naturally, the stress will reduce by increasing the number of dimensions, however only a 713 

maximum number of three dimensions can reasonably be interpreted. Using three dimensions 714 

the stress-value drops well below 0.2 (32), suggesting that a decent ordination of the data is 715 

possible in this number of dimensions. 716 

(B) Three-dimensional nMDS plot. The main data structure visualized using the two-717 

dimensional plot appears to be preserved when plotting the same data in three dimensions. 718 

Figure E5 – Relative abundance of early colonizing bacteria. 719 

Bar plots visualizing the relative abundance (mean ±standard error of the mean) of the 10 720 

highest ranking OTUs at each (early) time point (only considering day 0 and 1 and week 1 and 721 

2). For each OTU, we calculated the significance of change in relative abundance for each pair 722 

of consecutive time points (i.e. day 0 vs day 1, day 1 vs week 1 and week 1 vs week 2) using 723 

mixed linear models including subject as random effect. Significant differences between 724 

contrasts were determined using the multcomp-package. A Benjamini-Hochberg procedure was 725 

used to correct for multiple comparisons (simultaneously considering all OTUs/contrasts). ***, 726 

q-value <0.001; **, 0.001 ≤q-value <0.01; *, 0.01 ≤q-value <0.05. 727 

Figure E6 – Individual microbial developmental trajectories in time. 728 

Using average linkage hierarchical clustering based on the Bray-Curtis dissimilarity matrix 729 

samples were binned into 8 clusters consisting of ≥10 samples. These clusters were enriched 730 

for Moraxella (1) (MOR1) Corynebacterium (2) and Dolosigranulum (4) (CDG), 731 

Staphylococcus (3) (STA) and Streptococcus (5) (STR), Moraxella (7) (MOR7), Haemophilus 732 

(6) (HAE), Corynebacterium (8) (COR8) and Neisseria spp. (NEI). The number of individuals 733 

in each cluster at each time point was visualised in alluvial diagrams, which were stratified by 734 
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the number of RTIs experienced over the first year of life (i.e. (A) 0-2 RTIs, (B) 3-4 RTIs and 735 

(C) 5-7 RTIs). The height of the figures corresponds with the total number of samples within 736 

that group. In addition, the height of the nodes and the thickness of the lines connecting the 737 

nodes is proportional to the number of samples. We observed that the CDG-cluster is 738 

underrepresented in children who experienced 5-7 RTIs over time. Instead, the early-life STA-739 

cluster rapidly transitions into the MOR1-cluster, which is associated with older ages.  740 

Figure E7 – Relative abundance of age-discriminatory taxa at each time point. The line plots 741 

indicate the microbiota development for each age-discriminatory taxum. Dots represent mean 742 

relative abundance at a given time point within the stratum and whiskers depict the standard 743 

error of the mean. See Table E4 for statistical assessment. d = day; w = week; m = month. 744 

Figure E8 – Relative microbiota age stratified by time point and RTI cohort.  745 

Boxplots (see legend Figure 3) depicting relative microbiota age (RMA) for each cohort. The 746 

RMA was significantly higher in children who experienced 5-7 RTIs compared to the reference 747 

group, after adjusting for either age or sampling moment (both p=0.007). 748 

Figure E9 – Relative abundance of age-discriminatory taxa before (light green shades), during 749 

(red) and after RTI (dark green; see also legend figure 4C). Relative abundances were depicted 750 

using boxplots (see legend Figure 3). We tested the statistical significance of differences in 751 

microbial abundance between sampling moments using a linear mixed model including timing 752 

of sampling (i.e. ‘-2’, ‘-1’, ‘RTI’ or ‘+1’) and age (continuous) as fixed effects and subject as 753 

random effect. The contrasts ‘-2’ vs ‘-1’, ‘-1 vs ‘RTI’ and ‘RTI’ vs ‘+1’ were tested (multcomp 754 

package). Although we did observe changes in abundance of individual OTUs that appeared to 755 

be related to changes in RMA, these changes were not statistically significant (after adjusting 756 

for multiple testing). 757 
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Figure E10 – -diversity measures stratified by RTI susceptibility.  758 

We tested the number of observed species, Simpson and Shannon diversity indices. No 759 

significant differences between RTI groups were observed. Points represent mean values and 760 

whiskers depict the standard error of the mean. P-values were derived from mixed linear models 761 

with subject as random effect and adjusted for age (spline); p>0.05). d = day; w = week; m = 762 

month. 763 

Figure E11 – Relative abundance of the 15 highest ranking OTUs during the first year of life 764 

stratified by birth mode and feeding type - flow diagram.  765 

See legend Figure 1A. We observed an increased relative abundance of Corynebacterium (2) 766 

and Dolosigranulum (4) until the age of five months and late Moraxella spp. enrichment in 767 

children vaginally delivered and/or breastfed. Birth by caesarean section was associated with 768 

early Staphylococcus (3) predominance. Feeding type was studied as a categorical variable 769 

indicating whether children were exclusively breastfed (BF) up to the age of three months (3m). 770 

See Table E6 and E7 for statistical assessment.  771 

Figure E12 – Relative abundance of the 15 highest ranking OTUs during the first year of life 772 

stratified by birth mode and feeding type - line plots. 773 

(A) Line plots indicating the microbiota succession patterns of abundant taxa, stratified by birth 774 

mode (caesarean section vs vaginal). Points represent means and whiskers represent standard 775 

errors of the mean. See Table E6 for statistical assessment. d = day; w = week; m = month; RTI 776 

= respiratory tract infection. 777 

(B) Line plots indicating the microbiota succession patterns of abundant taxa, stratified by 778 

feeding type (exclusive breastfeeding up to the age of three months yes/no). Points represent 779 
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means and whiskers represent standard errors of the mean. See Table E10 for statistical 780 

assessment. d = day; w = week; m = month; RTI = respiratory tract infection. 781 
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Methods 21 

Study population 22 

Nasopharyngeal swabs were collected from healthy children who participated in an ongoing 23 

prospective birth cohort study. The primary aim of this population-based study is to investigate 24 

the development and dynamics of the microbiota in infants during health and disease, with 25 

special interest in the impact of mode of delivery on microbial succession. Since approximately 26 

15% of the Dutch children are born by caesarian section (E1), the cohort is enriched by 27 

caesarian section deliveries with the aim to obtain a ~50/50 distribution between caesarian 28 

section born children and vaginally delivered children. The study is conducted in the 29 

Netherlands, a small country (approximately 17 million inhabitants) in North-Europe with high 30 

socio-economic standards and a moderate sea climate characterized by cool summers and mild 31 

winters. 32 

 33 

The trials’ methods have been described elsewhere (E2). In short, healthy, term born newborns 34 

(gestational age >37 weeks) were enrolled in the study directly after birth. Exclusion criteria at 35 

baseline were major congenital anomalies, severe maternal or neonatal complications during 36 

birth, language barrier, intention to move outside the research area, or parents under the age of 37 

18 years. Written informed consent was obtained from both parents before birth of the child. 38 

Participants did not receive any financial compensation. An acknowledged national Ethics 39 

Committee in the Netherlands (METC Noord-Holland, committee on research involving human 40 

subjects) approved the study (M012-015, NH012.394, NTR3986). The study was conducted in 41 

accordance with the European Statements for Good Clinical Practice. We estimated 10-20% 42 

loss to follow-up, therefore we had ethical approval to replace participants in case they dropped 43 

out of the study before six months of follow-up. Eventually we had complete datasets up to one 44 
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year of age of 116 participants. These infants were born between December 19 th, 2012 and 45 

November 2st, 2014. 46 

Of these 116 children, we had at least eight samples of good quality available for 112 children 47 

after laboratory work-up (Figure E1).  48 

 49 

Our study was powered to detect differences in microbial communities between vaginally born 50 

children and children born by caesarian-section, which was the primary aim of the cohort study. 51 

We performed power calculations aiming to be able to detect at least two-fold differences in at 52 

least the top 25 most common bacteria after correction for multiple testing. Given the variability 53 

and spread in abundance of OTUs we calculated that 40 children per group would give us 54 

sufficient power (>80%) to address our primary research question. Because the inclusion rate 55 

of caesarian-born children was lower than expected, we were allowed to extend the enrollment 56 

period, resulting in a much larger sample size (N=128) than initially expected, enabling us to 57 

thoroughly investigate secondary outcomes, such as the association between microbiota 58 

differences and the number of RTIs, again providing us with sufficient power to analyze group 59 

sizes of approximately 40 children per group.  60 

 61 

Data collection  62 

Home visits were conducted directly after birth, 24 hours after birth, at seven days, 14 days, 63 

and one, two, three, four, six, nine, and 12 of months of age. Postpartum visits were all 64 

performed within two hours from birth and all day one samples were obtained within 24-36 65 

hours after delivery. For logistic reasons (sampling preferably during office hours and 66 

considering parental vacations), we allowed some flexibility for the remaining sample 67 

moments: all week one samples were obtained within 5-9 days (mean 7); all week two samples 68 

between 12-17 days (mean 14); month one samples between 23-27 days (mean 30), months two 69 
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samples between 49-73 days (mean 61), months three samples between 83-11 days (mean 92), 70 

months four samples between 112-133 days (mean 123), months six between 177-197 days 71 

(mean 184), months nine samples between 260-288 (mean 275), months 12 samples between 72 

358-382 (mean 366) days postpartum, resulting in no overlap between sample moments (see 73 

Figure 4A). 74 

 75 

Each home visit, nasopharyngeal samples were obtained by trained doctors and research nurses 76 

in a semi-sterile setting as previously described (E2). In short, deep nasopharyngeal swabs were 77 

collected trans nasally using a flexible, sterile swab (Copan eSwab, 484CE). Directly after 78 

sampling, the swabs were snap-frozen and stored in a sterile, filtered solution (10% Glycerol 79 

(VWR international BV 1.04093.1000) in 0.1% DEPC water (SERVA Electrophoresis, 80 

39798.03). The swabs were transported on dry ice and stored at -80°C until further analyses. In 81 

addition, the research team completed an extensive survey on the health status of the child and 82 

environmental factors, including breastfeeding, crowding conditions, and medication use.  83 

 84 

Next to these regular and frequent visits, parents were asked to contact the study team in case 85 

of an active respiratory tract infections, defined as fever ≥38°C (per rectal measurement) for >6 86 

hours combined with general unwell feeling and presence of RTI symptoms, including earache, 87 

cough, hoarseness, wheeze, dyspnoea and/or runny nose. During an extra home visit (RTI visit 88 

within 48 hours after start of the fever), we collected additional nasopharyngeal samples using 89 

the same procedure as described above and obtained information about the duration of the fever, 90 

RTI symptoms, and antibiotic use. In addition, the research team called parents two to four 91 

weeks after the RTI visit to complete the questionnaire. Since 15 of the children had respiratory 92 

symptoms with fever during one of the regular visits, these were also considered as a RTI 93 

episode in the analyses.  94 
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 95 

Bacterial DNA isolation and quantification 96 

Bacterial DNA from 200 μl sample was isolated by bead-beating in phenol (E3) and quantified 97 

using a qPCR with primers directed at the 16S-rRNA gene (E4, 5). DNA was then eluted in 98 

two aliquots of 25 μl elution buffer and stored at -20°C until further analyses. 99 

 100 

16S-rRNA gene amplicon sequencing  101 

PCR amplicon libraries were generated by amplification of the 16S ribosomal RNA gene using 102 

barcoded primers directed at the V4 hypervariable region, as previously described (E2). Primer 103 

pair 533F/806R was used for amplification. Amplicon pools from samples and controls were 104 

sequenced in eight runs using an Illuminia MiSeq instrument, resulting in paired-end 200 or 105 

250 nucleotide reads. We first trimmed all reads to a length of 200 nucleotides (Fastx toolkit, 106 

version 0.0.13) and then applied an adaptive, window-based trimming algorithm (Sickle, 107 

version 1.33) (E6) using a quality threshold of Q30 and a length threshold of 150 nucleotides 108 

to filter out low quality reads/nucleotides. We aimed to further reduce the number of sequence 109 

errors in the reads by applying an error correction algorithm (BayesHammer, SPAdes genome 110 

assembler toolkit, version 3.5.0) (E7). After quality filtering and error correction, reads were 111 

assembled into contigs (PANDAseq, version 2.9) (E8, 9) and demultiplexed (Qiime version 112 

1.9.1; split_libraries.py) (E10). We removed singleton sequences (1.4%) and identified 113 

chimeras using both de novo and reference chimera identification (UCHIME; 3.2%). After 114 

removal of chimeric sequences, VSEARCH abundance-based greedy clustering was used to 115 

pick OTUs at a 97% identity threshold (E11). OTUs were then annotated by the Naïve Bayesian 116 

RDP classifier (version 2.2) (E12) with a classification confidence of 50% (default) (E13) and 117 

annotations were based on the 97% identity SILVA 119 release reference database (E14). The 118 

SILVA-annotations for the most abundant/age-discriminatory taxa were verified using 119 
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BLASTN (E15) (Table E1).  In the main text we further refer to OTUs using maximum genus 120 

level annotations, combined with a rank number based on the abundance of each given OTU. 121 

 122 

Data normalisation and filtering 123 

We generated an abundance-filtered dataset by including only those OTUs that were present at 124 

or above a confident level of detection (0.1% relative abundance) in at least two samples, 125 

retaining 576 OTUs (0.3% of reads excluded) (E16). We generated a rarefied OTU-table at a 126 

sequence depth of 3,500 reads, calculated the relative abundance of OTUs and used this table 127 

as input for downstream analyses, including visualisations, random forest modelling and 128 

stability analyses. -diversity measures were calculated for 100 rarefactions at a sequencing 129 

depth of 3500 reads and averaged. Raw read counts were normalised intrinsically using 130 

cumulative sum scaling (CSS) if modelling was performed using the metagenomeSeq package 131 

and the fitTimeSeries function (E17). Using this function, the temporal associations between 132 

each of the 22 age-discriminatory taxa and risk of RTIs were assessed; only significant results 133 

were reported. For the analyses on the temporal effects of birth mode and feeding type, OTUs 134 

with >10 sequences in ≥50 samples were included. Similarly, for analyses based on Multivariate 135 

Association with Linear Models (MaAsLin), we selected OTUs from the rarefied OTU-table 136 

with a relative abundance of >0.1% in ≥50 samples. Next, de OTU-table was expanded by 137 

calculating the cumulative relative abundance of the selected OTUs at all taxonomic levels (i.e. 138 

ranging from species/OTU-level to kingdom level). β-diversity was assed using the Bray-Curtis 139 

dissimilarity metric. 140 

 141 

Quality control of 16S-rRNA gene amplicon sequencing 142 

URT samples, especially in very young children, are typically low in bacterial density (E18), 143 

and therefore measures to control for potential contamination with environmental of DNA are 144 
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of vital importance. Since we were particularly interested in the initial colonization patterns of 145 

the children in our cohort, we set out to discern samples with a high likelihood of environmental 146 

contamination, from those samples that did not resemble negative DNA blanks through an 147 

unsupervised clustering approach. Both low DNA samples (0.2 pg/µl-0.5 pg/µl) and blanks 148 

(n=50; 30 excluded because of too low sequence depth) were rarefied to a depth of 2,000 reads 149 

and subjected to average linkage hierarchical clustering based on the Bray-Curtis dissimilarity 150 

(100 repeats). For each repeat, we used the maximum Silhouette index to determine the optimal 151 

number of clusters (up to 20 clusters tested). Samples that co-clustered with DNA blanks in 152 

>5% of the repeats were excluded from subsequent analyses, together with samples that were 153 

sequenced twice, samples with a density of <0.2 pg/µl or read counts <3,500 sequences, and 154 

samples of individuals that were lost to follow-up and/or had <8 samples available (in total 211 155 

samples excluded), resulting in 1,121 samples from 112 individuals. Sequence data of part of 156 

the samples (≤6 months) of part of the children (743 samples, 101 individuals) were used for a 157 

previous study on the role of mode of delivery on early respiratory microbiota development 158 

(E2).  159 

 160 

In addition, we included 14 mock communities, consisting of 12 bacterial species commonly 161 

observed in the upper respiratory tract (i.e. Bacteroides fragilis, Haemophilus influenzae, 162 

Streptococcus pneumoniae, Streptococcus pyogenes, Klebsiella oxytoca, Klebsiella 163 

pneumoniae, haemolytic Streptococcus group A, Pseudomonias aeruginosa, Staphylococcus 164 

epidermidis, Staphylococcus aureus and Moraxella catarrhalis). Equivalent amounts of DNA 165 

isolated from these species were combined and included as internal controls in the Illumina 166 

MiSeq runs.  167 

 168 

Statistical analysis 169 
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All analyses were performed in the R version 3.3.0 within R studio version 0.99.902. All figures 170 

were created using the ggplot2 R-package and edited using Illustrator CC. We corrected for 171 

multiple testing if applicable using the Benjamini-Hochberg procedure (resulting in corrected 172 

P-values or q-values; p.adjust function). ‘Environmental factors’ used in the descriptions of the 173 

various models below comprises birth mode, breast feeding until three months of age, day care 174 

attendance, presence of siblings under five years of age, antibiotic treatment in the previous 175 

four weeks and season of birth, if not specified otherwise.  176 

 177 

Baseline tables 178 

Baseline tables were created using the tableone package (E19). Continuous variables were 179 

tested for normality using a Shapiro-Wilk test. Variables with a non-normal distribution were 180 

characterised using a median and interquartile range and the statistical significance of 181 

differences between groups was calculated using a Mann-Whitney U or Kruskal-Wallis test. 182 

Normally distributed variables were summarised by a mean and standard deviation and 183 

differences were tested for significance using a Student’s t-test/analysis of variance (ANOVA). 184 

For categorical variables, we used a Chi-square to test for statistically significant differences 185 

between groups. A Fisher’s exact test was used for categorical variables if the expected cell 186 

count was less than five. 187 

 188 

Non-metric multidimensional scaling and multivariate modelling 189 

Microbial succession patterns were visualised using non-metric multidimensional scaling 190 

(nMDS; metaMDS function in the vegan package; trymax=1,000) (E20) based on the Bray-191 

Curtis dissimilarity matrix. Ellipses were calculated using the veganCovEllipse function and 192 

represent the standard deviation of data points. Stress-values, which indicate how well the 193 

ordination captured the high-dimensional data (i.e. a measure of goodness-of-fit), were 194 
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reported. We tested whether a nMDS-visualisation in a higher dimensional space would 195 

decrease the stress of the ordination using a scree plot (1-6 dimensions tested). Based on our 196 

findings (balancing number of dimensions, reduction in stress-value and interpretability of the 197 

plot) we decided to provide a three-dimensional nMDS plot as a supplementary figure. 198 

 199 

To quantify the effect of environmental variables and number of RTIs on the overall microbiota 200 

composition we performed permutational multivariate analysis of variance (PERMANOVA)-201 

tests (adonis function of the vegan package; Bray-Curtis dissimilarity, 999 permutations). To 202 

assess the robustness of our findings based on one rarefied OTU-table, we reran the same 203 

PERMANOVA-tests on 100 rarefied OTU-tables and compared the effect size of the variables 204 

under consideration across rarefactions (Table E3A and E3C). 205 

 206 

Clustering and alluvial diagram 207 

To complement our findings based on our group-level analyses, we additionally assessed 208 

microbial development at the individual level. We first clustered individuals using unsupervised 209 

average linkage hierarchical clustering based on the Bray-Curtis dissimilarity matrix. The 210 

number of clusters was determined based on the Silhouette and Calinski-Harabasz indices (fpc 211 

package) (E21). Clusters consisting ≥10 samples were considered for subsequent analyses. The 212 

proportion of samples within each cluster at each time point was visualised using an alluvial 213 

diagram (ggvisSankey-function within the googleVis package) (E22).  214 

The alluvial diagram was stratified into three groups based on the normal distribution of RTIs 215 

in the population; 39 children with 0-2 RTIs (reference group), 52 children with 3-4 RTIs and 216 

21 children with 5-7 RTIs over the first year of life. 217 

 218 
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Random forest modelling 219 

We hypothesized that the microbial succession patterns in the upper respiratory tract would be 220 

altered in children who are more susceptible to RTIs. To investigate this hypothesis, we used a 221 

machine learning technique referred to as random forest, which consists of an ensemble of 222 

decision trees, each of which is built based on random partition of the data, using a random 223 

selection of predictors (E23). We chose a random forest-approach over a more traditional, 224 

reductionist approach where we would model individual OTUs, as we did not want to make 225 

any assumptions on the highly variable relationships between specific OTUs and age (figure 226 

E7). Also, OTU-abundance data is usually very sparse and overdispersed, which hinders the 227 

application of traditional statistical techniques. Last, the random forest approach enabled us to 228 

simultaneously model these challenging data, as well as reduce the dimensionality of the data, 229 

the latter of which is essential to microbiota analysis.  230 

To identify OTUs characteristic of a healthy microbiota maturation, we regressed the relative 231 

abundance of the 576 OTUs observed against chronological age in the reference group (i.e. 0-232 

2 RTIs) using the randomForest package, (ntree=10,000, default mtry, defined as the number 233 

of variables in the model divided by 3) (E24), as previously described (E16). The optimal 234 

number of age-discriminatory taxa required for the prediction of microbiota age was determined 235 

by calculating the cross-validated prediction performance of models with a sequentially reduced 236 

numbers of variables (ranked by importance measured by the mean increase of squared error if 237 

that variable would be removed from the model; caret package (E25); 100 iterations; Figure 238 

E3A and E3B). This selection of OTUs was subsequently used as input to a random forest 239 

model used to regress the relative abundance versus chronological age in the reference group 240 

(resulting in the final model). We determined the importance of the reduced set of variables 241 

based on the percentage increase in mean squared error after permuting the values for each 242 

OTU (100 iterations). The final model was then used to predict chronological age, referred to 243 
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as ‘microbiota age’, in individuals who experienced 3-4 and 5-7 RTIs and on the group of 244 

samples collected during RTIs. We used the train function in the ‘caret’ package (E25) to 245 

determine cross-validated predictions of microbiota age for the healthy cohort (10 folds, 100 246 

iterations, default mtry) to avoid reporting overfitted estimates (Figure 4A). The importance of 247 

the age-discriminatory OTUs was visualised per cohort at each time point using a heatmap. 248 

OTUs were vertically ordered based on an average linkage hierarchical clustering to visualise 249 

the interrelations between OTUs. The colours of the heatmap were row-wise normalized (i.e. 250 

red indicates the highest relative abundance of that OTU, black indicates the lowest value.). As 251 

a post-hoc analysis, we studied the effect of the Moraxella-genus on the performance of the 252 

microbiota age model by excluding the OTUs belonging to the Moraxella-genus from the model 253 

while monitoring the amount of variance explained.  254 

 255 

Since the relationship between chronological age and microbiota age was not linear, we 256 

calculated the relative microbiota age as described before (E16). Relative microbiota age 257 

(RMA) was calculated as follows: relative microbiota age = microbiota age of a given child – 258 

microbiota age of children of similar age in the reference group (determined by a spline fit) 259 

(E16). 260 

 261 

Linear mixed models  262 

Linear mixed models were used to assess the effect of fixed variables on a continuous dependent 263 

variable, while including subject as a random intercept to adequately control for repeated 264 

measures (lmer function of the lme4 package) (E26). Separate models were used study the effect 265 

of 1) environmental variables and 2) RTI susceptibility (defined as having experienced 0-2, 3-266 

4 or 5-7 RTIs during the first year of life) on relative microbiota age, Bray-Curtis-dissimilarity 267 

and -diversity measures. If a non-linear relationship between age and the dependent variable 268 
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was suspected, age was included in the model as a natural spline fit with five degrees of freedom 269 

(ns function of the splines R-package). In addition, we assessed influence of sampling moment 270 

on bacterial density (log10-transformed) and relative abundance (only first four time points) 271 

using linear mixed models. Furthermore, we investigated the changes in RMA and the relative 272 

abundance of age-discriminatory taxa at two time points before RTI, during RTI and at one 273 

time point after RTI using a mixed linear model with RMA/OTU-abundance as outcome 274 

variables and including timing of sampling (i.e. ‘-2’, ‘-1’, ‘RTI’ or ‘+1’), age as fixed effects 275 

and subject as random effect. We did not consider interactions between variables in our models. 276 

Post-hoc tests on contrasts of interest were performed using the multcomp package (E27). 277 

Contrasts as specified in the main text were included and we adjusted for multiple testing using 278 

the ‘single-step’ procedure (multcomp default), except when stated otherwise. 279 

 280 

Time series modelling 281 

To assess differences in abundance of OTUs between groups, we used smoothing spline 282 

ANOVA as implemented in the fitTimeSeries function (E28) of the metagenomeseq R-package 283 

(E17), which aims to model the differences in OTU-abundances between groups over time and 284 

is able to not only test if differences exist, but also to evaluate the timing of these differences. 285 

In addition, this function allows for the inclusion of a ‘class’-effect, to adequately control for 286 

repeated measures. Smoothing spline ANOVA models were used to study the (timing of) 287 

differential abundance of age-discriminatory taxa determined by random forest between 288 

children with 0-2 versus 3-4 RTIs and 0-2 versus 5-7 RTIs over the first year of life. In addition, 289 

these models were used to assess the effect of birth mode and exclusive breastfeeding until 290 

three months on the abundance of OTUs that passed the abundance filter, as these variables 291 

likely have a temporary effect on microbial abundance. P-values were determined based on 292 

1,000 permutations. 293 
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 294 

Multivariable modelling 295 

To identify significant associations between environmental variables (as defined before) and 296 

the relative abundance of OTUs in a multivariable manner, we used Multivariate Association 297 

with Linear Models (MaAsLin). Age was included as a natural spline with five degrees of 298 

freedom. Taxonomic entities simultaneously included in the models were OTUs that passed the 299 

abundance filtering criterion and OTUs binned together at higher taxonomic levels (i.e. genus, 300 

family, class, order, phylum and kingdom). We included subject as a random effect and ran the 301 

models using default settings. 302 

  303 
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Figure E1

139 pregnant women enrolled

128 infants enrolled

116 completed 12-month follow-up

112 infants with at least 8 samples

12 participants excluded
    4 study burden
    4 family circumstances
    2 refused sampling
    2 lost to follow-up

4 participants excluded
   4 bacterial density too low

11 participants excluded
    9 prenatal complications
    1 study burden
    1 delivery in tertiary hospital
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Figure E10
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Figure E11

Vaginal Caesarian section
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Figure E12
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Cont’d Figure E12
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