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Lipocalin 2 contributes to brain iron
dysregulation but does not affect
cognition, plaque load, and glial activation
in the J20 Alzheimer mouse model
Doortje W. Dekens1,2, Petrus J. W. Naudé1,2, Jan N. Keijser2, Ate S. Boerema2,3, Peter P. De Deyn1,4 and
Ulrich L. M. Eisel2,5*

Abstract

Background: Lipocalin 2 (Lcn2) is an acute-phase protein implicated in multiple neurodegenerative conditions.
Interestingly, both neuroprotective and neurodegenerative effects have been described for Lcn2. Increased Lcn2
levels were found in human post-mortem Alzheimer (AD) brain tissue, and in vitro studies indicated that Lcn2
aggravates amyloid-β-induced toxicity. However, the role of Lcn2 has not been studied in an in vivo AD model.
Therefore, in the current study, the effects of Lcn2 were studied in the J20 mouse model of AD.

Methods: J20 mice and Lcn2-deficient J20 (J20xLcn2 KO) mice were compared at the behavioral and
neuropathological level.

Results: J20xLcn2 KO and J20 mice presented equally strong AD-like behavioral changes, cognitive impairment, plaque
load, and glial activation. Interestingly, hippocampal iron accumulation was significantly decreased in J20xLcn2 KO mice
as compared to J20 mice.

Conclusions: Lcn2 contributes to AD-like brain iron dysregulation, and future research should further explore
the importance of Lcn2 in AD.

Keywords: Alzheimer’s disease, Lipocalin 2, Neutrophil gelatinase-associated lipocalin (NGAL), Neuroinflammation,
Astrocytes, Memory, Behavior

Background
Besides aggregation of amyloid-β (Aβ) and tau, it has be-
come clear that Alzheimer’s disease (AD) pathology is also
characterized by neuroinflammation and iron dysregulation.
Neuroinflammation has been recognized to play an

important role in AD, and involves chronic activation of
microglia and astrocytes in brain regions affected by AD
pathology [1–3]. While microglia- and astrocyte-mediated
immune responses may initially be neuroprotective,

chronically activated brain immune cells may lose certain
protective functions and acquire toxic properties [2, 4, 5].
For example, chronic production of reactive oxygen
species and pro-inflammatory cytokines by activated glia
contributes significantly to AD pathology, by activating
pro-apoptotic signaling pathways and promoting further
aggregation of Aβ [6–10].
Iron dysregulation is also known to play an important

part in AD pathology [11]. Iron accumulation occurs in
brain regions affected by AD pathology, particularly in
plaques and cell types including neurons and microglia
[12–15]. Iron accumulation may contribute significantly
to AD pathology by promoting Aβ aggregation, enhan-
cing further pro-inflammatory processes, disturbing
mitochondrial respiration, stimulating oxidative stress,
and inducing ferroptosis [11, 16].
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Interestingly, findings suggest that the protein Lipo-
calin 2 (Lcn2) may be involved in both neuroinflam-
mation and iron regulation, and might contribute to
AD pathology. Lcn2, also known as siderocalin, 24p3,
uterocalin, and neutrophil gelatinase-associated lipo-
calin (NGAL), is an acute-phase protein that is rapidly
produced and secreted in response to a wide range of
inflammatory and pathological stimuli [17, 18]. Lcn2
plays a role in various processes, including the defense
against certain bacterial infections by sequestering
iron-loaded bacterial siderophores, mammalian iron
metabolism, anti- and pro-inflammatory responses,
anti- and pro-apoptotic signaling, and cell migration
and differentiation [17, 19–21]. Studies showed that
Lcn2 protein levels in blood increase with age and
mild cognitive impairment, and are increased in
human post-mortem brain tissues in different diseases
of the central nervous system (CNS), including AD,
Parkinson’s disease, and multiple sclerosis [22–27].
Studies in mice and cell culture showed that Lcn2
contributes significantly to neurodegenerative pro-
cesses, for example by aggravating pro-inflammatory
responses, silencing neuroprotective signaling path-
ways, and sensitizing brain cells to cell death [25, 27–
34]. In the context of AD pathology, in vitro experi-
ments showed that astrocytes produce high levels of
Lcn2 in response to Aβ, and that Lcn2 renders brain
cells more vulnerable to Aβ-induced cell death [27,
31]. Contrastingly, a few studies concerning sepsis,
stroke, and multiple sclerosis reported that Lcn2
exerts significant neuroprotective functions, by
promoting anti-inflammatory responses and glial pro-
recovery phenotypes [35–37].
Whether Lcn2 exerts significant—either neuroprotec-

tive or neurodegenerative—effects on AD pathology has
not yet been studied in vivo. Therefore, the aim of the
present study was to determine the effect of Lcn2 on
AD-like pathology in a mouse model of AD. To this
end, we compared behavior, memory functioning, and
Aβ-associated neuropathology in J20 mice (a transgenic
amyloid precursor protein (APP) overexpressing AD
mouse model) and Lcn2-deficient J20 (J20xLcn2 KO)
mice. Neuropathological investigation included analysis
of hippocampal Aβ plaque load, activation of microglia
and astrocytes, and iron load.

Methods
Mice
Male wild-type (WT), J20, Lcn2 knock-out (KO), and
J20xLcn2 KO mice were studied at the behavioral and
neuropathological level. Originally, the J20 AD mouse
model (overexpressing human APP with the Swedish
and Indiana mutations, under a PDGFB promoter [38])
was obtained from the Mutant Mouse Resource and

Research Center (MMRRC stock no. 034836-JAX;
former JAX stock no. 006293), and lipocalin 2 knock-out
(Lcn2 KO) mice were received from the group of Prof.
Dr. T. Mak [39] (both lines are on a C57Bl/6 back-
ground). Subsequently, mice were bred in our animal
facility, and J20 and Lcn2 KO mice were cross-bred to
create a J20xLcn2 KO mouse line. J20 and J20xLcn2 KO
mice were hemizygous for the J20 transgene, and Lcn2
KO and J20xLcn2 KO mice were homozygous for the
Lcn2 knock-out. Genotypes of the mice were determined
by polymerase chain reaction (PCR) (Additional file 1:
Table S1). Behavioral experiments started when mice
were 11.5 months of age. All mouse experiments per-
formed in this study were approved by the animal ethics
committee of the University of Groningen (DEC6851A).

Behavioral experiments
To study different behaviors and cognitive functions,
several behavioral tests were performed, in the following
order: home-cage activity measurement, open field,
novel location recognition, Y-maze spontaneous alterna-
tion, elevated-plus maze, and Morris water maze. All
tests were conducted by the same experimenter, who
was blinded for the mouse genotypes. The arenas used
for the behavioral tests (except the Morris water maze)
were cleaned with ethanol in between mice. In total, 61
mice were studied, with n = 13–17 mice per genotype
(WT: n = 17, J20: n = 13, Lcn2 KO: n = 16, J20xLcn2 KO:
n = 15). Mice were studied in two cohorts of 30–31
mice, balanced for genotype. More details are included
in Additional file 1.

Home-cage activity
Home-cage activity was recorded for 2 weeks for all
mice, by placing each mouse cage underneath a passive
infrared (PIR) sensor. Movements were aggregated and
stored in one-minute bins on a computer.

Open field
For the open field test, mice were allowed to freely
explore a square arena for 5 min. Movements of the
mice were tracked with specialized software (EthoVision
XT version 11.5, Noldus, The Netherlands). As a measure
of locomotor activity, the total distance moved was ana-
lyzed. Also, as indications of anxiety-like behavior, the
time spent in the center zone of the arena and the latency
to first enter the center zone were measured. More details
are described in Additional file 1.

Novel location recognition
The day after the open field, the novel location recognition
(NLR) test started. The NLR test is a hippocampus-
dependent recognition memory task, based on rodent’s
natural exploratory behavior and preference for novelty
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[40]. The NLR task consisted of a training and test session,
24 h apart. In both the NLR training and test, mice were
allowed to freely explore two identical objects (placed in a
square arena) for 10 min. However, in the NLR test, one of
the two objects was placed at its original (training) location
while the other object was relocated. Object exploration
was analyzed, and as a measure of recognition memory, the
discrimination index was calculated: (time spent exploring
the (to be) relocated object/total exploration time)*100. A
discrimination index of above 50% indicated a preference
for the relocated object. Please find more details in
Additional file 1.

Y-maze spontaneous alternation
As an indication of spatial working memory, mice were
studied in the Y-maze spontaneous alternation task [41].
Mice were placed in the center of a white Y-shaped
maze, and allowed to freely explore all three arms for
10 min. Trials were recorded and scored for arm entries
(by a blinded observer), after which the percentage of
spontaneous alternation was calculated. Also see
Additional file 1.

Elevated-plus maze
To further assess anxiety-like behavior, mice were tested
in the elevated-plus maze (EPM) [42]. Mice that are
more anxious are likely to be more reluctant to explore
open and elevated spaces. Mice were placed in the cen-
ter of the EPM and were allowed to freely explore the
maze for 8 min. The crossings into open and closed
arms, and the time spent in the open, closed, and center
zones were scored. Also see Additional file 1.

Morris water maze (hidden-platform)
The Morris water maze (MWM) was performed to as-
sess hippocampus-dependent spatial learning and mem-
ory [43]. The MWM was performed as described by Van
Dam et al. [44, 45], with some modifications. Briefly, in
the training phase, mice were trained to learn the pres-
ence and location of a platform hidden in the MWM
pool. The training phase comprised of eight consecutive
days, with one training block (consisting of four trials,
each of maximally 120 s) per mouse per day. Swimming
trajectories (including escape latency and swimming
distance) of the mice were tracked with EthoVision XT
software (Noldus, The Netherlands). After eight MWM
training days, two probe trials followed, performed 24 h
and 48 h after the last training. For the probe trial, the
platform was removed from the maze, and mice were
allowed to swim freely for 100 s. As a measure of spatial
accuracy, the number of crossings through the original
platform position was scored, as well as the time spent
in the target quadrant and the other quadrants. Please
find more details in Additional file 1.

Immunohistochemistry for detection of Aβ, GFAP, Iba1,
and Lcn2
A week after the last behavioral test was finished, mice
were terminally anesthetized by intraperitoneal injec-
tion with sodium pentobarbital and transcardially
perfused with saline and 4% paraformaldehyde (PFA).
Brains were then post-fixed in PFA for an additional
24 h, dehydrated, frozen, and cut in coronal sections
of 20-μm-thick on a cryostat. Hippocampal free-
floating sections were stained for Aβ, glial fibrillary
acidic protein (GFAP) and ionized calcium binding
adaptor molecule 1 (Iba1), and immunofluorescent
co-stainings were performed for Lcn2 and Aβ, GFAP,
Iba1, and NeuN. Details of immunohistochemical
stainings are included in Additional file 1.

Histochemistry for detection of iron
For detection of (mostly ferric Fe3+) iron, the 3,3′-diami-
nobenzidine (DAB)-enhanced Perls’ iron stain was used.
A staining protocol comparable to that reported by
Chen et al. 2015 [46] was used, with some modifications,
as described in Additional file 1.

Quantification of (immuno)histochemical stainings
For the Aβ, GFAP, and iron stainings, the coverage as
well as the optical density of the staining was quantified.
For analysis of the Iba1 staining, we were interested in
obtaining a measure of microglial activation. To this
end, the ratio between the cell body size and the total
cell size of microglia was analyzed, as described previ-
ously by Hovens et al. [47, 48]. For all stainings, quantifi-
cation was mostly focused on the hippocampus. The Aβ
staining was analyzed for the entire hippocampus. The
analysis of the GFAP, Iba1, and iron stainings was per-
formed for specific hippocampal sub-regions, including
sub-regions of the cornu ammonis sector 1 (CA1) region
and dentate gyrus (DG) (as indicated in the results and
in Additional file 1: Figure S1). For all stainings, 3–6
hippocampi were analyzed per mouse. More details are
described in Additional file 1.

Statistical analysis
Results were tested by one-way ANOVA followed by
Tukey’s multiple comparisons post-hoc test, or by
Kruskal-Wallis test followed by Dunn’s multiple compar-
isons test when data was not normally distributed or
variances were unequal. Two-way repeated measures
ANOVA was used to analyze the MWM training phase.
Statistical analysis was performed using GraphPad Prism
version 5.0 for Windows. Data are presented as mean ±
standard error of the mean (SEM). Differences between
Lcn2 KO mice and J20/J20xLcn2 KO mice were not in-
dicated, since comparisons between these groups were
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not considered relevant to our study aims. Differences
were considered statistically significant when p < 0.05.

Results
J20 and J20xLcn2 KO mice are equally hyperactive
Home-cage activity of WT, J20, Lcn2 KO, and
J20xLcn2 KO mice (11.5 months of age) was recorded
for 2 weeks. Home-cage activity measurement re-
vealed clear hyperactivity in J20 and J20xLcn2 KO
mice (p < 0.0001 and p < 0.05 respectively, compared
to WT, Additional file 1: Figure S2A, B), correspond-
ing to hyperactive behavior in the open field (p < 0.05
compared to WT, Additional file 1: Figure S2C) and in
other tests (Additional file 1: Figure. S3). Although the
home-cage activity results seem to suggest that
J20xLcn2 KO mice might be less hyperactive as J20
mice, this difference was not statistically significant.
Thus, it appears that J20 and J20xLcn2 KO mice show
clear and equally strong hyperactivity.
Another important basic behavioral characteristic,

anxiety-like behavior, was studied in the open field and
elevated-plus maze (EPM). Despite an increased time
spent in the center zone of the open field in Lcn2 KO
mice compared to WT mice (p < 0.05, Additional file 1:
Figure S4A), no differences were found in the latency to
enter the center zone of the open field (Additional file 1:
Figure S4B), in the time spent on the open or closed
arms in the EPM (Additional file 1: Figure S4C, D) or in
the number of EPM arm entries (data not shown). Thus,
overall, there seem to be no significant differences in
anxiety-like behavior between the studied genotypes.

J20 and J20xLcn2 KO mice show equally severe memory
impairment
Next, we aimed to assess whether the lack of Lcn2 in
J20xLcn2 KO mice caused a difference in working mem-
ory compared to J20 mice in the Y-maze spontaneous
alternation task. As shown in Fig. 1a, no differences in
working memory were found between the studied geno-
types. Also, no significant differences were found for the
number of arm entries in the Y-maze spontaneous alter-
nation (Fig. 1b).
Subsequently, hippocampus-dependent memory func-

tioning was investigated in the novel location recognition
(NLR) task and the hidden-platform Morris water maze
(MWM). In the training of the NLR, as expected, none of
the groups showed a preference for one of the two identi-
cal objects that had been placed in the open field (Fig. 1c,
showing a discrimination index of around 50%). In the
NLR test (24 h after the training), both WT and Lcn2 KO
mice spent more time exploring the relocated object, indi-
cating intact recognition memory (discrimination indices
were significantly above chance level (50%), p < 0.05 and p
< 0.01, respectively, Fig. 1d). Lcn2 KO mice did not differ

from WT mice in recognition memory. J20 and J20xLcn2
KO mice performed significantly worse compared to WT
mice (p < 0.01 and p < 0.05, respectively) and showed a
discrimination index that was not significantly different
from chance level, indicating impaired recognition mem-
ory. No significant difference between J20 and J20xLcn2
KO mice was observed.
In the MWM J20 and J20xLcn2 KO mice presented

impaired learning compared to WT mice, as seen
from the reduced slope of the learning curves of the
escape latency and swim distance parameters (p < 0.01
and p < 0.0001 respectively, Fig. 1e, f ). Also in the
probe trials, performed 24 h and 48 h after the last
MWM training, J20 and J20xLcn2 KO had signifi-
cantly worse memory of the platform position and the
target quadrant (Fig. 1g, h, and Additional file 1:
Figure S5), as seen from fewer crossings over the pos-
ition where the platform used to be, and less time
spent in the target quadrant (p < 0.05).
Thus, J20 and J20xLcn2 KO mice showed equally se-

vere memory impairment in both the NLR test and
the MWM. Of note, Lcn2 KO mice showed signifi-
cantly slower MWM learning curves compared to WT
mice, possibly indicating mild memory impairment
during the training phase (p < 0.05, Fig. 1e, f ).
However, Lcn2 KO mice performed similar to WT
mice in the first and second probe trial (Fig. 1g, h and,
Additional file 1: Figure S5).

J20 mice show increased hippocampal Lcn2 levels in
astrocytes
To confirm that Lcn2 levels are increased in the brains
of J20 mice, and to assess the cell type to which Lcn2
was mainly localized, fluorescent stainings were per-
formed. As shown in Fig. 2a, clear Lcn2-positive cells
are indeed present in the J20 mouse brain, while WT
mouse brains only show faint Lcn2-positive staining. To
assess the brain cell type in J20 mouse brains in which
Lcn2 was localized, co-stainings were performed for
Lcn2 and NeuN, Iba1, and GFAP (Fig. 2b–d). Lcn2-posi-
tive staining did not co-localize with the neuronal
marker NeuN or the microglia marker Iba1, but did
clearly co-localize with GFAP-positive astrocytes.

J20 and J20xLcn2 KO mice develop similar hippocampal
plaque load, and show equal microglia and astrocyte
activation
Although no differences were found between J20 and
J20xLcn2 KO mice in behavioral and memory pheno-
type, it is possible that differences may be present at the
neuropathological level. To investigate this, hippocampal
slices were stained for (1) Aβ to assess potential differ-
ences in Aβ accumulation, (2) GFAP to assess possible
differences in astrocyte activity, (3) Iba1 to determine
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Fig. 1 (See legend on next page.)
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possible differences in microglia activation, and (4) iron
to investigate potential differences in iron accumulation.
As shown in Fig. 3a, clear Aβ aggregation and plaque
load was present in the hippocampus of J20 mice, quan-
tified by measuring the total coverage of Aβ-staining (p
< 0.0001 compared to WT). J20xLcn2 KO mice,

however, showed a similar hippocampal coverage of
Aβ-positive staining. Clear astrogliosis (p < 0.0001 in-
crease in GFAP coverage compared to WT) and micro-
glia activation (p < 0.01 increase in microglia activity
compared to WT) were also found in the hippocampus
of J20 mice, yet, equal glial activation was found in

(See figure on previous page.)
Fig. 1 Impaired hippocampus-dependent long-term memory in J20 and J20xLcn2 KO mice, no differences in working memory. a Alternation (%) in the Y-
maze spontaneous alternation test. b Number of arm entries in the Y-maze spontaneous alternation test (10 min). Tested with one-way ANOVA with
Tukey’s multiple comparisons test. n= 13–17 mice per group (WT n= 17, J20 n= 13, Lcn2 KO n= 16, J20xLcn2 KO n= 15). c Discrimination index (%) in the
novel location recognition (NLR) training and d in the NLR test, that was performed 24 h after the NLR training. Dashed line indicates 50% chance level. Of
note, one Lcn2 KO and one J20xLcn2 KO mouse had to be excluded from the analysis due to lack of exploratory behavior. n= 13–17 mice per group (WT
n= 17, J20 n= 13, Lcn2 KO n= 15, J20xLcn2 KO n= 14). Tested with one-way ANOVA with Tukey’s multiple comparisons test. e Escape latency (s) and (f)
swim distance (cm) in the training phase of the Morris water maze (MWM). n= 13–17 mice per group (WT n= 17, J20 n= 13, Lcn2 KO n= 16, J20xLcn2 KO
n= 15). Tested with two-way repeated measures ANOVA. g Number of platform crossings and h time spent in the pool quadrants during the probe trial
(24 h after the last training trial). n= 13–17 mice per group (WT n= 17, J20 n= 13, Lcn2 KO n= 16, J20xLcn2 KO n= 15). Tested with one-way ANOVA with
Tukey’s multiple comparisons test. *p< 0.05; **p< 0.01; ***p< 0.0001 compared to WT. No significant differences were present between J20 and J20xLcn2
KO mice

Fig. 2 Lcn2 production is increased in the J20 brain, and is localized in GFAP-positive astrocytes. a Representative images of fluorescent staining
for Lcn2 in the hippocampus of WT, J20, Lcn2 KO, and J20xLcn2 KO mice. b Representative images of fluorescent co-staining for Lcn2 and the
neuronal marker NeuN, in the J20 hippocampus. c Representative images of fluorescent co-staining for Lcn2 and the microglia marker Iba1, in
the J20 hippocampus. d Representative images of fluorescent co-staining for Lcn2 and the astrocyte marker GFAP, in the J20 hippocampus.
Images were acquired with a 63x (oil) objective lens. Scale bar: 25 μm
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J20xLcn2 KO mice (Fig. 3b, c). Astrocyte and microglia
activation were assessed in specific hippocampal
sub-regions. Interestingly, astrocyte activation in J20 and
J20xLcn2 KO mice appeared to be induced equally
strongly in all hippocampal sub-regions analyzed, as well
as the corpus callosum (Additional file 1: Figure S6). In
contrast, it appeared that microglia activation may de-
pend more on the specific hippocampal region: while
clear microglia activation is found in the dentate gyrus,
microglia activation is not significantly increased in the
CA1 region (Additional file 1: Figure S7).

Iron dysregulation is present in the hippocampus of J20
mice, and is less severe in J20xLcn2 KO mice
Finally, potential differences in hippocampal iron
regulation were investigated between genotypes. To
this end, hippocampal sections were stained by DAB-
enhanced Perls’ staining (detecting mostly ferric Fe3+

iron), and the coverage and optical density of iron
staining were analyzed in different hippocampal
sub-regions. As shown in Fig. 4a, a clear increase in
iron staining was detected in the hippocampus of J20
mice, including both plaque-like iron staining and
more diffuse and intracellular iron staining (such as
the staining seen in the pyramidal and granular neur-
onal layers in the CA1 and dentate gyrus). As shown
in Fig. 4b, c and Additional file 1: Figure S8A, B, quan-
tification of the coverage and optical density of the
iron-positive staining confirmed this observation of
increased iron staining in J20 mice as compared to
WT mice, in many of the studied hippocampal
sub-regions (p < 0.05 or p < 0.01 in different hippo-
campal sub-regions). Intriguingly, less iron staining is
visible in the hippocampus of J20xLcn2 KO mice, as
compared to J20 mice (p < 0.05 in different hippocam-
pal sub-regions). Moreover, it appeared that Lcn2 KO

Fig. 3 Clear plaque formation and activation of astrocytes and microglia in J20 and J20xLcn2 KO mice. a Representative examples of
immunohistochemical staining for Aβ with 6e10 antibody (× 50 magnification, scale bar: 500 μm), and (in the outer right column) quantification
of the coverage of total hippocampal Aβ staining. b Representative examples of immunohistochemical staining for GFAP (× 100 magnification,
scale bar: 300 μm), and (in the outer right column) quantification of the coverage of GFAP staining in the dentate gyrus and CA1 region of the
hippocampus (combined). c Representative examples of immunohistochemical staining for Iba1 (× 200 magnification, scale bar: 150 μm), and (in
the outer right column) quantification of microglial activity in the dentate gyrus of the hippocampus. n = 8–10 mice per group (WT n = 10, J20 n
= 8, Lcn2 KO n = 9, J20xLcn2 KO n = 9), 3–6 hippocampi were analyzed per mouse. Tested with one-way ANOVA with Tukey’s multiple
comparisons test. **p < 0.01 and ***p < 0.0001 compared to WT. No significant differences were present between J20 and J20xLcn2 KO mice
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Fig. 4 (See legend on next page.)
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mice may display stronger hippocampal iron staining
as compared to WT mice, in different hippocampal
sub-regions.

Discussion
We report that J20 and Lcn2-deficient J20 (J20xLcn2 KO)
mice at 12 months of age show equally severe AD-like be-
havioral changes, cognitive impairment, plaque formation,
and glial activation. Intriguingly, J20xLcn2 KO mice pre-
sented significantly decreased AD-like iron accumulation
in the hippocampus, as compared to J20 mice.
The reduced hippocampal iron load in J20xLcn2 KO

versus J20 mice indicates that Lcn2 contributes to
AD-like iron accumulation in the brain. This result cor-
responds with the finding of Lcn2-mediated brain iron
accumulation in an animal model of hemorrhagic stroke
[34]. Also, Lcn2 was reported to stimulate ferritin
mRNA expression in Aβ-treated cultured astrocytes,
indicating a Lcn2-mediated increase in iron storage
upon Aβ-challenge [31].
Lcn2 is known to be involved in iron metabolism by

binding to bacterial and mammalian siderophores (small
iron-binding molecules) present in the body [49–51].
Lcn2 is able to mediate both import and export of iron
into/from cells [52, 53]. Under inflammatory conditions,
Lcn2 contributes to an iron-retentive response known as
the anemia of inflammation, by promoting iron retention
in macrophages [54, 55]. Possibly a similar iron-retentive
response occurs in the inflamed brain. Indeed, astro-
cytes, neurons, and especially microglia (the macro-
phages of the brain) were found to accumulate high
levels of non-transferrin bound iron upon inflammatory
stimulation [15, 56–61], which might possibly in part be
regulated by Lcn2.
This possibility may explain the observed Lcn2-

mediated iron retention in J20 versus J20xLcn2 KO
brains, and warrants further investigation of involved
cell types and siderophores. Moreover, the pathophysio-
logical relevance of Lcn2-mediated brain iron accumula-
tion in AD requires further research. Namely, despite the
well-known important role of iron dysregulation in
different AD-related pathophysiological processes, the

alleviated iron accumulation in J20xLcn2 KO mice as
compared to J20 mice is not accompanied by significant
changes in other AD characteristics, such as behavior, cog-
nition, Aβ aggregation, and glial activation. It may be pos-
sible that the hippocampal iron accumulation in
12-month-old J20 mice is not severe enough (yet) to over-
whelm the stable iron storage facilities in the brain, and/or
that other compensatory mechanisms induced upon iron
dysregulation are (still) sufficient to protect the brain from
iron toxicity. This scenario would explain why the differ-
ence in iron load between J20 and J20xLcn2 KO mice
does not result in significant differences in other AD
characteristics. It would be of great interest to study
this hypothesis, including the possibility that
(Lcn2-mediated) iron dysregulation may become more
severe in more advanced AD mice. In these future
studies, it would be interesting to for example assess
potential differences in levels of labile reactive iron,
oxidative stress, and ferroptosis.
Interestingly, the results suggests that Lcn2 may also

affect iron homeostasis under healthy unchallenged con-
ditions, as indicated by the increased hippocampal iron
levels in Lcn2 KO mice as compared to WT mice. It
should be noted that significance between WT and Lcn2
KO mice was often not reached when all four genotypes
were compared, while significant differences were found
when only WT and Lcn2 KO mice were compared. This
finding corresponds with previous reports, in which in-
creased iron levels were found in macrophages and
neural stem cells in healthy Lcn2 KO mice [62–64].
Taken together, basal physiological levels of Lcn2

under healthy conditions may be required to maintain
iron homeostasis (with absence of Lcn2 leading to iron
accumulation in certain cell types, possibly by reduced
iron export), while increased Lcn2 levels under patho-
logical conditions may contribute to iron dysregulation
and accumulation as well (with increased Lcn2 levels
leading to iron accumulation in plaques and certain cell
types, possibly by increased iron import). Importantly,
although iron homeostasis is tightly regulated, it thus
appears that Lcn2 has an important function in iron
regulation and distribution in the brain.

(See figure on previous page.)
Fig. 4 Increased hippocampal iron accumulation in J20 mice, and less severe iron accumulation in J20xLcn2 KO mice. a Representative examples
of histochemical staining for iron by enhanced Perls’ reaction. Images were acquired and analysis was performed at × 100 magnification (scale
bar: 300 μm). Detailed images were acquired at × 400 magnification (scale bar: 50 μm). Examples include a focus on the CA1 and the dentate
gyrus regions of the hippocampus. b Quantification of the coverage of iron-positive staining, in the stratum oriens and pyramidal layer of the
CA1 region, and in the inner blade and granular layer of the dentate gyrus. Of note, due to regional differences in intensity of the iron staining,
the iron staining in the CA1 pyramidal and DG granular cell layers was analyzed with a different detection threshold than the detection threshold
used to analyze the other hippocampal sub-regions. This explains the higher relative coverages of iron staining found for the CA1 pyramidal and
DG granular cell layers, as compared to other hippocampal sub-regions. c Quantification of the optical density of iron-positive staining, in the
stratum oriens and pyramidal layer of the CA1 region, and in the inner blade and granular layer of the dentate gyrus. n = 8–9 mice per group
(WT n = 9, J20 n = 8, Lcn2 KO n = 9, J20xLcn2 KO n = 9), 3–4 hippocampi were analyzed per mouse. Tested with Kruskal-Wallis test with Dunn’s
multiple comparisons post-hoc test. *p < 0.05 and **p < 0.01
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No differences were detected in behavior, cognition,
plaque load, and glial activation between J20 and
J20xLcn2 KO mice. The absence of significant detrimen-
tal or beneficial effects of Lcn2 on these AD-like charac-
teristics is notable, taking into account the strong
neurodegenerative [22, 25, 27–29, 31–34, 65–69] and
neuroprotective [35–37] effects that were reported for
Lcn2 in various in vitro and animal models of brain in-
jury and disease. It is possible that Lcn2 indeed does not
affect cognition and glial activation in AD, which would
provide interesting contrasting information on the role
of Lcn2 in neurodegeneration. Alternatively, it is pos-
sible that Lcn2 might affect AD pathology in other
models of AD. For example, it would be important to
validate if Lcn2 might affect cognitive function and path-
ology in AD models that present more severe neuronal
loss (for example APP/PS1KI mice [70]), or in mice at
other ages. Furthermore, although clear Lcn2-positive
astrocytes were detected, it should be determined
whether Lcn2 in the J20 mouse brain reaches concentra-
tions that are comparable to the Lcn2 levels in the hu-
man AD brain. Related to this, it would be of interest to
investigate AD models which overexpress Lcn2 (besides
Lcn2-deficient AD models). Of note, most studies re-
garding the role of Lcn2 in CNS disease/injury until now
were performed in acute models of CNS injury (which
may cause stronger, short-term, induction of Lcn2), in
contrast to the chronic transgenic AD model studied
here (in which—in comparison to models of acute in-
jury—Lcn2 expression may be less strong, which may
also be the case for the expression of other inflammatory
mediators such as interleukin 1 beta (IL-1β, also see,
Additional file 1: Figure S9)). Finally, it should be taken
into account that J20 mice overexpress human Aβ while
expressing murine Lcn2 (62% identical to human Lcn2
on the amino acid level [71]), which might impact their
potential direct or indirect interactions and the transla-
tional value to the human disease.
Taken together, more insight into the protective and

toxic effects of Lcn2 is required to understand its im-
portance in AD, and its potential as a therapeutic tar-
get. Of note, while Lcn2 KO mice are of great value in
the study of Lcn2, it should be considered that poten-
tial mild developmental disturbances may be present
in these mice. As shown in the current and previous
studies [62, 63], healthy unchallenged Lcn2 KO mice
may display disturbed iron regulation in the periphery
and the brain, which might affect important physio-
logical processes such as synaptic plasticity and neuro-
genesis [62, 72, 73]. Possibly related to this, Lcn2 KO
mice appear to present a mild cognitive impairment,
as seen from the MWM learning curves in Fig. 3e, f
(Additional file 1: Figure S10) and previous reports
[62, 72]. Interestingly, this mild cognitive impairment

might in part be overcome with age (Additional file 1:
Figure S10). To circumvent potential mild develop-
mental disturbances in Lcn2 KO mice, it would be of
interest to investigate conditional Lcn2 KO (or condi-
tional Lcn2-overexpressing) mice.

Conclusions
The results from this study show that Lcn2 contributes
to hippocampal iron accumulation in the J20 AD mouse
model. As such, this study provides new insights into
Lcn2 as a potential functional element in iron dysregula-
tion in the AD brain. Lcn2 did not significantly affect
other AD-like characteristics (including behavioral
changes, cognitive impairment, plaque load, and glial ac-
tivation) in the J20 mouse model at 12 months of age.
However, it is possible that such effects might surface in
other AD models and/or at other ages, which should be
investigated in future work.

Additional file

Additional file 1: Lipocalin 2 contributes to brain iron dysregulation but
does not affect cognition, plaque load and glial activation in the J20
Alzheimer mouse model. Contains supplementary information and
supplementary figures, belonging to the study ‘Lipocalin 2 contributes to
brain iron dysregulation but does not affect cognition, plaque load and
glial activation in the J20 Alzheimer mouse model’. (PDF 1866 kb)
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