595 research outputs found

    Targeted Therapies in Melanoma

    Get PDF
    Advances in understanding the biology of melanoma have provided great insights about the mechanisms of chemoresistance and its genetic heterogeneity in parallel with advances in drug design culminating in recent major treatment breakthroughs using small molecules inhibitors in metastatic melanoma (MM). While clinical benefit of targeted therapies has been unquestionable, future advances can only be possible if we better understand the interplay between genetic aberrations and role of other crucial non-genetic changes yet to be identified by such projects as the Cancer Genome Atlas Project (TCGA) in Melanoma. Combination therapies, either among small molecule inhibitors themselves and/or with immunotherapies may be the optimal strategy to prevent development of drug resistance that is inherently linked with such targeted therapies

    The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP)

    Get PDF
    Venom is a known source of novel antimicrobial natural products. The substantial, increasing number of these discoveries have unintentionally culminated in the misconception that venom and venom-producing glands are largely sterile environments. Culture-dependent and -independent studies on the microbial communities in venom microenvironments reveal the presence of archaea, algae, bacteria, endoparasites, fungi, protozoa, and viruses. Venom-centric microbiome studies are relatively sparse to date and the adaptive advantages that venom-associated microbes might offer to their hosts, or that hosts might provide to venom-associated microbes, remain unknown. We highlight the potential for the discovery of venom-microbiomes within the adaptive landscape of venom systems. The considerable number of known, convergently evolved venomous animals juxtaposed with the comparatively few studies to identify microbial communities in venom provides new possibilities for both biodiversity and therapeutic discoveries. We present an evidence-based argument for integrating microbiology as part of venomics to which we refer to as venom-microbiomics. We also introduce iVAMP, the Initiative for Venom Associated Microbes and Parasites (https://ivamp-consortium.github.io/), as a growing consortium for interested parties to contribute and collaborate within this subdiscipline. Our consortium seeks to support diversity, inclusion and scientific collaboration among all researchers interested in this subdiscipline

    Three-dimensional cephalometric evaluation of maxillary growth following in utero repair of cleft lip and alveolar-like defects in the mid-gestational sheep model

    Get PDF
    Objective: To evaluate maxillary growth following in utero repair of surgically created cleft lip and alveolar (CLA)-like defects by means of three-dimensional (3D) computer tomographic (CT) cephalometric analysis in the mid-gestational sheep model. Methods: In 12 sheep fetuses a unilateral CLA-like defect was created in utero (untreated control group: 4 fetuses). Four different bone grafts were used for the alveolar defect closure. After euthanasia, CT scans of the skulls of the fetuses, 3D re-constructions, and a 3D-CT cephalometric analysis were performed. Results: The comparisons between the operated and nonoperated skull sides as well as of the maxillary asymmetry among the experimental groups revealed no statistically significant differences of the 12 variables used. Conclusions: None of the surgical approaches used for the in utero correction of CLA-like defects seem to affect significantly postsurgical maxillary growth; however, when bone graft healing takes place, a tendency for almost normal maxillary growth can be observed. Copyright (c) 2006 S. Karger AG, Basel

    Microbial adaptation to venom is common in snakes and spiders

    Get PDF
    Animal venoms are considered sterile sources of antimicrobial compounds with strong membrane disrupting activity against multi-drug resistant bacteria. However, bite wound infections are common in developing nations. Investigating the oral and venom microbiome of five snake and two spider species, we evidence viable microorganisms potentially unique to venom for black-necked spitting cobras (Naja nigricollis). Among these are two novel sequence types of Enterococcus faecalis misidentified by commonly used clinical biochemistry procedures as Staphylococcus; the genome sequence data of venom-specific isolates feature an additional 45 genes, at least 11 of which improve membrane integrity. Our findings challenge the dogma of venom sterility and indicate an increased primary infection risk in the clinical management of venomous animal bite wounds

    Keratoconus associated with choroidal neovascularization: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Keratoconus and choroidal neovascularization can occur as a result of dysfunction of the epithelium and its basement membrane.</p> <p>Case presentation</p> <p>A 17-year-old Asian man, who was diagnosed with myopic choroidal neovascularization in both eyes and who subsequently underwent intravitreal injection of ranibizumab (Lucentis<sup>®</sup>) five times over six months, presented with further vision decrease and pain in his right eye. Examination showed corneal steepening and stromal edema in the inferocentral cornea of his right eye, both of which were indicative of advanced keratoconus with acute hydrops. Corneal topography also showed features consistent with keratoconus in his left eye. Fluorescein angiography and optical coherence tomography revealed choroidal neovascularization-associated subretinal hemorrhages and lacquer cracks in both eyes.</p> <p>Conclusion</p> <p>Keratoconus and choroidal neovascularization, possibly resulting from dysfunction of the epithelium and its basement membrane, can occur together in the same individual. This would suggest a possible connection in pathogenesis between these two conditions.</p

    Mitochondrial respiration - an important therapeutic target in melanoma

    Get PDF
    The importance of mitochondria as oxygen sensors as well as producers of ATP and reactive oxygen species (ROS) has recently become a focal point of cancer research. However, in the case of melanoma, little information is available to what extent cellular bioenergetics processes contribute to the progression of the disease and related to it, whether oxidative phosphorylation (OXPHOS) has a prominent role in advanced melanoma. In this study we demonstrate that compared to melanocytes, metastatic melanoma cells have elevated levels of OXPHOS. Furthermore, treating metastatic melanoma cells with the drug, Elesclomol, which induces cancer cell apoptosis through oxidative stress, we document by way of stable isotope labeling with amino acids in cell culture (SILAC) that proteins participating in OXPHOS are downregulated. We also provide evidence that melanoma cells with high levels of glycolysis are more resistant to Elesclomol. We further show that Elesclomol upregulates hypoxia inducible factor 1-α (HIF-1α), and that prolonged exposure of melanoma cells to this drug leads to selection of melanoma cells with high levels of glycolysis. Taken together, our findings suggest that molecular targeting of OXPHOS may have efficacy for advanced melanoma. © 2012 Barbi de Moura et al

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study

    Get PDF
    Introduction Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain suboptimal. Highly active WHO group A drugs moxifloxacin and levofloxacin show intraindividual and interindividual pharmacokinetic variability which can cause low drug exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to personalise the drug dosage, aiming to prevent the development of drug resistance and optimise treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB has not been extensively studied. This observational multicentre study aims to determine the feasibility of centralised TDM and to investigate the impact of fluoroquinolone TDM on sputum conversion rates in patients with MDR-TB compared with historical controls. Methods and analysis Patients aged 18 years or older with sputum smear and culture-positive pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample analysis and dosing advice will be performed in a centralised laboratory. Centralised TDM will be considered feasible if &gt;80% of the dosing recommendations are returned within 7 days after sampling and 100% within 14 days. The number of patients who are sputum smear and culture-negative after 2 months of treatment will be determined in the prospective TDM group and will be compared with the control group without TDM to determine the impact of TDM. Ethics and dissemination Ethical clearance was obtained by the ethical review committees of the 10 participating hospitals according to local procedures or is pending (online supplementary file 1). Patients will be included after obtaining written informed consent. We aim to publish the study results in a peer-reviewed journal. Trial registration number ClinicalTrials.gov Registry (NCT03409315)

    Clinical Significance of Optic Disc Progression by Topographic Change Analysis Maps in Glaucoma: An 8-Year Follow-Up Study

    Get PDF
    Aim. To investigate the ability of Heidelberg Retina Tomograph (HRT3) Topographic Change Analysis (TCA) map to predict the subsequent development of clinical change, in patients with glaucoma. Materials. 61 eyes of 61 patients, which, from a retrospective review were defined as stable on optic nerve head (ONH) stereophotographs and visual field (VF), were enrolled in a prospective study. Eyes were classified as TCA-stable or TCA-progressed based on the TCA map. All patients underwent HRT3, VF, and ONH stereophotography at 9–12 months intervals. Clinical glaucoma progression was determined by masked assessment of ONH stereophotographs and VF Guided Progression Analysis. Results. The median (IQR) total HRT follow-up period was 8.1 (7.3, 9.1) years, which included a median retrospective and prospective follow-up time of 3.9 (3.1, 5.0) and 4.0 (3.5, 4.7) years, respectively. In the TCA-stable eyes, VF and/or photographic progression occurred in 5/13 (38.4%) eyes compared to 11/48 (22.9%) of the TCA-progressed eyes. There was no statistically significant association between TCA progression and clinically relevant (photographic and/or VF) progression (hazard ratio, 1.18; P=0.762). The observed median time to clinical progression from enrollment was significantly shorter in the TCA-progressed group compared to the TCA-stable group (P=0.04). Conclusion. Our results indicate that the commercially available TCA progression criteria do not adequately predict subsequent photographic and/or VF progression
    corecore