377 research outputs found

    CCR2 (chemokine (C-C motif) receptor 2)

    Get PDF
    Review on CCR2 (chemokine (C-C motif) receptor 2), with data on DNA, on the protein encoded, and where the gene is implicated

    SULF1 (sulfatase 1)

    Get PDF
    Review on SULF1 (sulfatase 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Distance and Regional Effects on the Value of Wild Bee Conservation

    Get PDF
    Many wild bee species are threatened across Europe, and with them the pollination function they provide. While numerous studies have assessed the value of bees as pollinators of crops, little is known about the non-marked value of bees. Using a choice modelling experiment, we examine these non-market values in Germany by identifying citizens’ willingness to pay (WTP) for wild bee conservation initiatives in four states. Effects of distance, state and regional affiliation are scrutinised, as previous research found these to affect respondents’ choices. Random parameter logit and latent class models are used to capture preference heterogeneity. Overall, we find strong support of wild bee conservation and a clear preference for improvement relative to the status quo, particularly in natural areas and for rare or endangered species. The yearly WTP for conservation initiatives ranges from 227 to 447€ per household. Our results show distance and regional effects on WTP. Initiatives in respondents’ home states are preferred, and increasing distance to initiatives in other states result in a slightly reduced WTP. Additionally, we observe regional preferences within an eastern and a western home region. These preferences are not explainable by socio-demographic characteristics, home state or distance and probably linked to social and cultural affiliations. We conclude that for widespread support in society and effective conservation initiatives, policy proposals must address this spatial heterogeneity from distance and regional effects. © 2022, The Author(s), under exclusive licence to Springer Nature B.V.The authors thank the anonymous reviewers for their extensive and valuable comments on this manuscript. The authors would further like to thank Julian Sagebiel from the Swedish University of Agricultural Sciences for his support in the analysis of the survey data. They thank Alice Rogowski, Bennet Bergmann, Helena Leinweber, Jan Peters, Jean Paul Moreaux, Thomas Prossliner, as well as the focus groups participants for their valuable comments on the early version of the questionnaire. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. C.M., B.D. and C.R. thank the Danish National Research Foundation for its support of the Center for Macroecology, Evolution and Climate (Grant No. DNRF96)

    Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    Full text link
    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, differential aberrations between the ExAO sensing path and the science path represent a critical limitation for the detection of giant planets with a contrast lower than a few 10610^{-6} at very small separations (<0.3\as) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase contrast methods to circumvent this issue and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental and simulation results are consistent, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. We then corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the instrument. The simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the on-line measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could ease the observation of the cold gaseous or massive rocky planets around nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after language editin

    Semi-kinematic mount of the FIREBALL large optics

    Get PDF
    In the context of the NASA CNES FIREBALL balloon borne experiment, we present the design of a semi-kinematic mount to hold the 1 meter class mirrors of this mission. To maintain these large optics in a reasonable mass and price budgets we choose thin ULE mirrors with a thickness over diameter ratio of 1/16. Such thin mirrors require a multi support mount to reduce self weight deflection. Classical multi support mount used for ground based telescope would not survive the level of shock observed in a balloon experiment either at parachute opening or landing. To firmly maintain these mirrors in several points without noticeably deforming them we investigated the design of a two stages semi-kinematic mount composed of 24 monopods. We present the detailed design of this innovative mirror mount, the finite element modeling with the deduced optical wavefront deformation. During the FIREBALL integration and flight campaign in July 2007 at CSBF, we confirmed the validity of the mechanical concept by obtaining an image quality well within the required specifications. Variants of this approach are potentially applicable to large thin mirrors on ground-based observatories

    E-cadherin can limit the transforming properties of activating β-catenin mutations

    Get PDF
    Wnt pathway deregulation is a common characteristic of many cancers. But only Colorectal Cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of pancreas) have activating mutations in β-catenin (CTNNB1). We have compared the dynamics and the potency of β-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β-catenin took much longer to achieve a Wnt deregulation and acquire a crypt-progenitor-cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β-catenin mutation to differentially transform the SI versus the colon correlated with significantly higher expression of the β-catenin binding partner E-cadherin. This increased expression is associated with a higher number of E-cadherin:β-catenin complexes at the membrane. Reduction of E-cadherin synergised with an activating mutation of β-catenin so there was now a rapid CPC phenotype within the colon and SI. Thus there is a threshold of β-catenin that is required to drive transformation and E-cadherin can act as a buffer to prevent β-catenin accumulation

    APRIL is overexpressed in cancer: link with tumor progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R) have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia.</p> <p>Methods</p> <p>We compared the expression of <it>BAFF, APRIL, TACI and BAFF-R </it>gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database.</p> <p>Results</p> <p>We found significant overexpression of <it>TACI </it>in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, <it>BAFF and APRIL </it>are overexpressed in many cancers and we show that <it>APRIL </it>expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS), which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans.</p> <p>Conclusion</p> <p>Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies.</p
    corecore