194 research outputs found

    ¿Existe relación entre los factores afectivos en las matemáticas y el rendimiento académico en educación primaria?

    Get PDF
    Este trabajo, pretende analizar y describir la importancia que desempeñan los factores afectivos (emociones, creencias y actitudes) en el aprendizaje de las matemáticas. Se presentan los resultados de un estudio realizado con 384 alumnos del tercer ciclo de Educación Primaria, con edades comprendidas entre los 10 y 12 años para evaluar los aspectos afectivos hacia la materia en relación con el rendimiento académico. Entre las seis dimensiones que contempla el cuestionario, el autoconcepto matemático, las creencias acerca de su destreza matemática y las atribuciones de causalidad sobre dicha materia presentan mayores niveles de significatividad con las calificaciones. El estudio muestra que estos factores y el rendimiento académico están correlacionados acentuando la necesidad de otorgar un papel más destacado a los componentes afectivos para mejorar la calidad de la matemática

    Hyperbolic limit on the early arrival time of bright pulses from PSR~J0835-4510 (Vela)

    Full text link
    Astronomers have studied the Vela pulsar (PSR~J0835-4510) for decades. This study analyses almost one hundred hours of single-pulse data collected over three consecutive days from 2016 and 2020. The work investigates the fascinating phenomena of the earlier arrival of brighter pulses with their increase in peak intensity. We found a hyperbolic relation between them by constructing integrated pulse profiles using flux density intervals and examining the relationship between pulse arrival time and intensity. We identified a phase limit of 0.85 ±0.0109-0.85~\pm 0.0109~ms for the earliest arrival of the brightest pulses. This study offers exciting prospects for further exploring the emission regions responsible for the Vela pulsar's regular and giant micro-pulses.Comment: 9 pages, 11 figure

    Phase Transitions in Two-Dimensional Traffic Flow Models

    Get PDF
    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.Comment: RevTeX 3.0 file. Figures available upon request to e-address [email protected] (or 'dopico' or 'molera' or 'anxo', same node

    Two-dimensional cellular automaton model of traffic flow with open boundaries

    Full text link
    A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.Comment: 14 pages, Phys. Rev. E in press, PostScript figures available at ftp://hirose.ai.is.saga-u.ac.jp/pub/documents/papers/1996/2DTR/ OpenBoundaries/Figs.tar.g

    The use of micro-XRD for the study of glaze color decorations

    Get PDF
    The compounds responsible for the colours and decorations in glass and glazed ceramics include: colouring agents (transition metal ions), pigments (micro-and nano-precipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron Radiation micro-X-ray Diffraction has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth dependent composition and crystal structure. Their nature and distribution across the glass/glazes decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro- XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and renaissance tin glazed ceramics from the 10th to the 17th century AD

    Search for a standard model-like Higgs boson in the μ+ μ- and e+ e- decay channels at the LHC

    Full text link
    A search is presented for a standard model-like Higgs boson decaying to the μ+μ− or e+e− final states based on proton–proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to integrated luminosities of 5.0 fb−1 at a centre-of-mass energy of 7 TeV and 19.7 fb−1 at 8 TeV for the μ+μ− search, and of 19.7 fb−1 at 8 TeV for the e+e− search. Upper limits on the production cross section times branching fraction at the 95% confidence level are reported for Higgs boson masses in the range from 120 to 150 GeV. For a Higgs boson with a mass of 125 GeV decaying to μ+μ−, the observed (expected) upper limit on the production rate is found to be 7.4 (6.5+2.8 −1.9) times the standard model value. This corresponds to an upper limit on the branching fraction of 0.0016. Similarly, for e+e−, an upper limit of 0.0019 is placed on the branching fraction, which is ≈3.7 × 105 times the standard model value. These results, together with recent evidence of the 125 GeV boson coupling to τ -leptons with a larger branching fraction consistent with the standard model, confirm that the leptonic couplings of the new boson are not flavour-universalWe congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund; and the Russian Scientific Fund, grant N 14-12-0011

    Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    Full text link
    We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy √s=8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the fewz program. The results are also compared to the commonly used leading-order MadGraph and next-to-leading-order powheg generatorsWe acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fun

    The SFXC software correlator for Very Long Baseline Interferometry: Algorithms and Implementation

    Get PDF
    In this paper a description is given of the SFXC software correlator, developed and maintained at the Joint Institute for VLBI in Europe (JIVE). The software is designed to run on generic Linux-based computing clusters. The correlation algorithm is explained in detail, as are some of the novel modes that software correlation has enabled, such as wide-field VLBI imaging through the use of multiple phase centres and pulsar gating and binning. This is followed by an overview of the software architecture. Finally, the performance of the correlator as a function of number of CPU cores, telescopes and spectral channels is shown.Comment: Accepted by Experimental Astronom

    Sensitive Species Data in Colorado’s State and Local Government Decision-Making

    Get PDF
    This report addresses the use of sensitive species data in Colorado at both the state and local levels. At the state level, this research focuses on environmental statutes and regulations, permitting authority in various state agencies, and processes for identifying and dealing with sensitive species. At the local level, the focus is on the role of sensitive species data in development proposals, as well as the varying level of detail required for considering sensitive species data in in local government decision-making. Principally, this report identifies: (1) areas where statutes and regulations require the consideration of sensitive species data; (2) areas where data could be used but are not used currently; and (3) impediments to the best data being used in decision-making. Finally, this report offers suggested best practices and recommendations for statutory and regulatory changes to ensure that decision-makers are using the best available sensitive species data. The recommendations provided in this report include statutory changes, regulatory amendments, and changes to policy documents. Ultimately, each of these recommendations serve to increase transparency in decision-making processes and improve considerations of environmental impacts. While this report recognizes that the overarching goal of more complete considerations for sensitive species may be achieved through recommendations not included in this report, the recommendations provided intend to serve as a framework to guide potential changes to the law
    corecore