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Phase transitions in two-dimensional traffic-flow models 
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We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have 
found that a few basic elements give rise to the characteristic phase diagram of a first-order phase 
transition from a freely moving phase to a jammed state, with a critical point. The jammed phase 
presents new transitions corresponding to structural transformations of the jam. We discuss their 
relevance in the infinite-size limit. 

PACS number(s): 05.70.Fh, 05.40.+j, 64.60.Cn, 89.40.+k 

Car displacements through large cities, data exchange 
among processors in a massively parallel computer, or 
communications in computer networks, are examples of 
situations where avoiding undesirable traffic jams is ex­
tremely important [1]. It is therefore necessary to achieve 
a comprehensive understanding of the mechanisms lead­
ing to the nucleation, growth, and evolution of these traf­
fic jams, as they can be responsible for decrease or even 
full suppression of flow between different parts of the sys­
tem. To this end, models based on cellular automata 
(CA) seem to be a suitable tool to approach the problem 
because of both their nature and their computational effi­
ciency. Some one-dimensional [1-5] and two-dimensional 
[6,7] models have been proposed in the past to study 
different traffic flow problems. In the one-dimensional 
case, there is good agreement between CA [4] and fluid­
dynamical [8] results, as well as with data obtained from 
actual traffic in highways [1,4]; however, from a theoret­
ical point of view a great deal of work is still needed, 
although there has been recently some progress [5] by 
taking into account short-range correlations in mean-field 
theory. As regards two-dimensional (2D) CA models, the 
only ones we are aware of are based upon the fundamen­
tal assumption that cars never turn [6,7]. In this Rapid 
Communication we show that allowing cars to turn (as 
in actual situations) brings along the appearance of a 
complex phase diagram. 

Our model consists of the following basic ingredients. 
We have cars moving inside a town. The town is made 
of one-way perpendicular (L horizontal and L vertical) 
streets arranged in a square lattice with periodic bound­
ary conditions. The way of every street is fixed indepen­
dently according to a certain rule that depends on the 
particular choice of the model (see below). Cars sit at 
the crossings, and they can move to one of their nearest 
neighbors (allowed by the direction of the streets) every 
time step. Two cars cannot be at the same crossing si­
multaneously. Each car is assigned a trend or preferred 
direction, ruled by a variable wi(r), which we define as 
the probability that car i, located at node r, jumps to 
the allowed neighbor in the horizontal street [accordingly,· 
1 - wi(r) is the probability to move vertically]. Finally, 
there are traffic lights that permit horizontal motion at 
even time steps and vertical motion at odd time steps. 

We now define the dynamics of the model. Every time 
step wi(r) is evaluated and the direction where to move 
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next is chosen accordingly. Then, it is checked that the 
chosen site is empty and that the motion is allowed by 
the light; otherwise the car will not be moved. Finally, 
all cars that can be moved are placed at their destina­
tion site and the next time step starts. We want to stress 
that the whole process is carried out simultaneously for 
all cars. The fact that traffic lights allow motion alterna­
tively in vertical and horizontal streets prevents two cars 
from colliding at any crossing. 

In this paper, we concern ourselves with two of the 
simplest versions of the model, which we name model A 
and model B. Both models are characterized by a unique 
parameter T which we call randomness. This parameter 
allows us to control the trend of the motion of every 
car by defining wi(r) through it. Model A has streets 
pointing only up and left. Half of the cars are given a 
trend Wi (r) = T' and the other half are set to Wi (r) = 
1 - T. This amounts to having half of the cars moving 
preferentially upwards and the other half leftwards. For 
symmetry reasons, it is enough to study the range 0 ::; 
T ::; 1/2. It has to be noticed that, in case we fix T = 0, 
the cars are deterministic and always move along their 
preferred direction, and Model A becomes Model I of Ref. 
[6]. Model B is defined in the following way. It has streets 
that point alternatively up and down, and right and left. 
We work with four equal-number groups of cars: Each of 
them is assigned one of the four possible directions as its 
trend. This is accomplished by the following definition: 
Upward or downward bound cars have. wi(r) = T if a 
street with the same direction as the trend of the ith car 
passes through site r, and wi(r) = 1 - T otherwise; left 
or right cars behave the other way around. 

On the above debcribed models, we have carried out 
an extensive simulation program, simulating the corre­
sponding CA's on towns of 32x32, 64x64, and 128x128 
sites. A typical run consists of the evolution along 106 

time steps of a randomly chosen initial condition for a 
given density (ratio of number of cars to number of lat­
tice sites). For every time step we monitor the mean 
velocity, defined as the number of moved cars divided by 
the total number of cars. By means of this magnitude, 
we distinguish when the system reaches a steady state. 
Once in this state, we perform time averages on magni­
tudes of interest until the end of the simulation. We have 
also studied the outcome of different randomly chosen 
initial configurations. Although, in general, these out-
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comes are similar, a very particular dependence is found 
in some parts of the phase diagram (see below). We have 
also checked different random-number generators [9] and 
all of them lead to the same results. We have studied 
these models for a number of car densities ranging from 
n = 0 to n = 1, and for randomness values on the range 
o :S I :S 1/2. In addition, we have recorded any pos­
sible structure of the traffic jam in the steady state by 
measuring the average occupation time per site, defined 
as the number of time steps during which a site is occu­
pied by a stopped car divided by the total averaging time. 
All simulations were performed in computer workstations 
HP 720, and DEC 3100 and 5100; a typical simulation 
for a given car density on a 64x64 town takes about 2 
h of CPU time, and 12 h for a 128 X 128 town (this is 
for model A; for model B times are approximately 25% 
higher). 

Results for model A are summarized in Fig. 1. Such 
a figure can be understood as the phase diagram of a 
first-order phase transition [11] from a freely moving to 
a jammed phase. The curves v(n) undergo a discontinu­
ous transition of magnitude ~v(J) at density nth). As 
I increases, nt(J) shifts to higher densities and ~V(I) 
decreases, eventually vanishing for some randomness IC' 
The point of density nc = nt (Jc) and average velocity 
Vc = v(nc), belonging to the curve for IC' will correspond 
to a critical point. This conclusion is further supported 
by the large increase of the fluctuations of V observed 
in the vicinity of that point. As can be inferred from 
Fig. 1, the location of the critical point lies somewhere 
in the range 0.45 :S IC :S 0.5, but it cannot be more ac­
curately determined from our simulations, first, because 
I is an input parameter, and, second, due to the strong 
size dependence of IC' 

The part of the curves v(n) corresponding to the free 
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FIG. 1. Average velocity, v, for cars in model A as a func­
tion of car density, n, for different randomness values, 'Y, in a 
city of 64 x 64 streets. The full lines are a guide to the eye. 
The dashed line is an approximate fit to the points where the 
transition occurs. 

phase (which for I = 1/2 means the whole curve) fits 
rather well the linear law v(n) = (1 - n)/2. It can be 
proven analytically for the infinite system [10] that this 
is precisely the asymptotic behavior of v(n) when n -+ 0, 
for any value of I' It is remarkable that the agreement 
with the simulations is rather good even far from this 
limit. 

The jammed phase, and in fact the nature of the tran­
sition, can be better understood by analyzing the average 
distribution of cars on the lattice. Figure 1 shows in this 
phase, for the lowest values of I' a few small jumps in 
which the value of v increases. The explanation of these 
jumps is the following: Before the jamming transition oc­
curs, cars are homogeneously distributed, whereas after 
the transition cars always ordered along broad diagonal 
strips extending throughout the whole system (see Fig. 
2), with the two types of cars roughly separated in two 
halves. These strips do not trap empty sites (holes) in­
side; thus, the observed remnant average velocity is due 
only to the movement of the cars on the borders of the 
strips. Different numbers of strips characterize different 
ordered phases. A given initial configuration goes to one 
of these phases with a certain probability. For a given 
density, we compute this probability by taking a large 
number of initial configurations and counting how many 
of them go to each phase. The stable phase will be that of 
maximum probability, the rest of them being metastable. 
Accordingly, in Fig. 1 we plot the velocity of the stable 
phase. The small jumps correspond to an exchange of 
stability between two phases. In these jumps v increases, 
since every new strip provides two more borderlines along 
which cars can move. As this remnant movement is just a 
"surface" effect, it should vanish when L -+ 00; however, 
at the same time the number of strips increases, hence 
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FIG. 2. Average site density of stopped cars in model A 
(128 x 128 streets) in the jammed phase, for a car density 
n = 0.7 and a randomness 'Y = 0.1. Different values are repre­
sented by different gray levels ranging from black (site always 
empty) to white (site always occupied). This illustrates the 
multistrip structure of the jammed phase in model A. 
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supplying extra moving cars. The resulting value in the 
infinite system will depend on this competition of effects; 
we will return to this point later on. 

For'Y = 0 the results are similar to those reported in [6] 
(the only difference being that our velocities are, by def­
inition, half theirs). Since cars do not change direction, 
any initial configuration ends up either in a periodic or 
in a stuck (v = 0) state. The predominance of each kind 
of state decides in which phase the system is. According 
to the authors of [6], their results do not allow them to 
exclude the possibility that nt(O) -+ 0 as L -+ 00. In 
contrast, though in our simulations the values of nt(-y) 
also decrease as L increases, we can clearly see that for 
the lowest values of'Y (say, 'Y = 0.1, 0.2, and 0.3) it al­
ready converges to a nonzero value, even for the relatively 
small sizes we are dealing with. Besides, as we have com­
mented on above, we have proven [10] that the slope of 
v(n), for infinite L, is exactly -1/2, independently of 'Y, 
in the limit n -+ O. This result also holds for 'Y = 0; 
however, the simulations of [6] indicate that the value of 
the slope in the free phase is 0 for L up to 512. This fact 
supports the idea that when L -+ 00, nt (0) -+ 0, though 
the possibility of a change of slope from 0 to -1/2 at 
much larger system sizes is not excluded, but seems very 
unlikely. 

From the size dependence of the parameters of our sim­
ulation we can draw an image of what happens in model 
A when L -+ 00. On the one hand, as we have already 
pointed out, nt(-y) converges to a nonzero value in the in­
finite system. On the other hand, the 'Y = 0.5 curve does 
not change with L, and the critical point moves towards 
this curve as L increases (it cannot be inferred from our 
results whether or not 'Ye finally reaches the value 1/2). 
Accordingly, even though the transition densities, nt(-Y), 
for the rest of the values of 'Y still decrease, they should 
reach a nonzero value when L -+ 00. This part of the 
phase diagram will thus not qualitatively change at infi­
nite size. Regarding the structure of the jammed phase, 
as strips never trap holes, the only possible way that 
such structures survive in an infinite city with n =I- 0 and 
n =I- 1 is that an infinite number of strips appear. Conse­
quently, those "transitions" between jammed phases with 
different numbers of strips are a finite system size effect; 
a result that is further supported by the fact that such 
transitions move quickly towards nt(-y) as L increases. 
The infinite system will then be formed by infinite strips 
with a typical size and a typical separation (which will in 
general depend on n), and the value of v will simply be 
the ratio of the average number of moving cars per strip 
to the average number of cars per strip. Nevertheless, 
as the average separation between strips seems compara­
ble to the sizes used in our simulations, the values of v 
obtained are still affected by strong finite-size effects. 

The phase diagram of model B is similar to that of 
model A. There is also a phase transition from the "free" 
to the jammed regime, with diagonal strip structure right 
after the transition. This is indicated as before by a sharp 
decrease of the velocity for a certain value of the den­
sity nt(-y) (smaller than in model A). The dependence of 
the parameters characterizing the transition, nt(-y) and 
ilv(-y), on 'Y and the size ofthe city L is qualitatively the 

same as in model A. The main differences of this model 
are in the structure of the jammed states appearing after 
the transition. This model having four different types 
of cars and streets, it has a symmetry (absent in model 
A) under 90° rotations, and the jammed strip can appear 
with equal probability along each diagonal direction. Be­
sides that, the strip has inside some holes that allow the 
diffusion through the jam of the different car types. They 
also contribute to the remnant velocity in the jam state 
and could have some significant effect in the infinite size 
case. The other important departure from the behav­
ior of model A is the type of stable phases present in 
the jammed region. First of all, while in model A the 
jammed phase can show multiple strips, in model B we 
only see one strip. This strip is composed of two longi­
tudinal halves, each containing a mixture of two types of 
cars. For example, if the strip runs from the lower left 
to the upper right, the upper half of it is mainly com­
posed of cars of the types trying to go to the right and 
down, and the bottom half by the ones trying to go to 
the left and up. Second, as density is increased, a point 
is reached where the form of the stable jammed phase 
suddenly changes. The majority of the holes that before 
this point were forming a strip parallel to the cars now 
arrange themselves in a closed squarelike, region (see Fig. 
3). Meanwhile, the cars in the jam have separated in 
four regions according to their type. The cars trying to 
go up are above each empty region, to the left are the 
ones trying to go left, and so on. This change of struc­
ture produces a noticeable, though small, change in the 
slope of the velocity curves v(n) in the phase diagram. 
Our simulations do not allow us to conclude whether this 
transition is continuous or weakly first order. More work 
on this point is in progress [10]. 

From our data we can only conjecture what the struc-
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FIG. 3. Same as Fig. 2 for model B and car density n = 0.9 
and randomness 'Y = 0.2. These parameters correspond to the 
second-order phase (see text). The existence of closed empty 
regions surrounded by cars is illustrated. 
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ture of the jammed phase in model B will be as the size 
of system goes to infinity. We have already seen, in some 
preliminary runs, that the number of those empty regions 
increases, as we simulate, at constant density, in larger 
cities. Keeping the parallelism with model A, we can 
think that in the limit of infinite size an infinite num­
ber of strips will appear (though the existence of holes 
inside them weakens this conclusion). However, due to 
the 90°-rotation symmetry present in model B, the strips 
may appear in both diagonal directions simultaneously. 
If this were to happen the stable state would be one in 
which there would be an infinite number of square like 
empty regions, as described above, arranged in a kind of 
lattice structure. We hope that we will be able to settle 
this question in the future. 

In summary, we have studied models incorporating 
what we think are the essential ingredients (excluded vol­
ume and turn capability) of urban car movement in cities 
with realistic structures (defined by the arrangement of 
the streets and the organization of traffic lights) and we 
have found a first-order phase transition from a freely 
moving regime to a jammed state. It is important to 
check whether this striking feature still stands when more 
elements are added (say, disorder via forbidden streets 
or nonsynchronized traffic lights, preferred streets, rush 
hours, stopped cars [7], etc.). If this happens, it will be 
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FIG. 3. Same as Fig. 2 for model B and car density 11. = 0.9 
and randomness i = 0.2. These parameters correspond to the 
second-order phase (see text). The existence of closed empty 
regions surrounded by cars is illustrated. 


