39 research outputs found

    Noncommutative Quantum Mechanics Viewed from Feynman Formalism

    Full text link
    Dyson published in 1990 a proof due to Feynman of the Maxwell equations. This proof is based on the assumption of simple commutation relations between position and velocity. We first study a nonrelativistic particle using Feynman formalism. We show that Poincar\'{e}'s magnetic angular momentum and Dirac magnetic monopole are the direct consequences of the structure of the sO(3) Lie algebra in Feynman formalism. Then we show how to extend this formalism to the dual momentum space with the aim of introducing Noncommutative Quantum Mechanics which was recently the subject of a wide range of works from particle physics to condensed matter physics.Comment: 11 pages, To appear in the Proceedings of the Lorentz Workshop "Beyond the Quantum", eds. Th.M. Nieuwenhuizen et al., World Scientific, Singapore, 2007. Added reference

    Spin Hall effect of Photons in a Static Gravitational Field

    Full text link
    Starting from a Hamiltonian description of the photon within the set of Bargmann-Wigner equations we derive new semiclassical equations of motion for the photon propagating in static gravitational field. These equations which are obtained in the representation diagonalizing the Hamiltonian at the order â„Ź\hbar , present the first order corrections to the geometrical optics. The photon Hamiltonian shows a new kind of helicity-magnetotorsion coupling. However, even for a torsionless space-time, photons do not follow the usual null geodesic as a consequence of an anomalous velocity term. This term is responsible for the gravitational birefringence phenomenon: photons with distinct helicity follow different geodesics in a static gravitational field.Comment: 6 page

    Appearance of Gauge Fields and Forces beyond the adiabatic approximation

    Full text link
    We investigate the origin of quantum geometric phases, gauge fields and forces beyond the adiabatic regime. In particular, we extend the notions of geometric magnetic and electric forces discovered in studies of the Born-Oppenheimer approximation to arbitrary quantum systems described by matrix valued quantum Hamiltonians. The results are illustrated by several physical relevant examples

    Angular Symmetry Breaking Induced by Electromagnetic Field

    Full text link
    It is well known that velocities does not commute in presence of an electromagnetic field. This property implies that angular algebra symmetries, such as the sO(3) and Lorentz algebra symmetries, are broken. To restore these angular symmetries we show the necessity of adding the Poincare momentum M to the simple angular momentum L. These restorations performed succesively in a flat space and in a curved space lead in each cases to the generation of a Dirac magnetic monopole. In the particular case of the Lorentz algebra we consider an application of our theory to the gravitoelectromagnetism. In this last case we establish a qualitative relation giving the mass spectrum for dyons.Comment: 19 page

    Topological Force and Torque in Spin-Orbit Coupling System

    Full text link
    The topological force and torque are investigated in the systems with spin-orbit coupling. Our results show that the topological force and torque appears as a pure relativistic quantum effect in an electromagnetic field. The origin of both topological force and torque is the Zitterbewegung effect. Considering nonlinear behaviors of spin-orbit coupling, we address possible phenomena driven by the topological forces.Comment: 4 page
    corecore