423 research outputs found

    Physical aspects of fracture scaling and size effect

    Get PDF
    ISSN:0376-9429ISSN:1573-267

    Continuous motor sequence learning: cortical efficiency gains accompanied by striatal functional reorganization.

    Get PDF
    The acquisition and generation of action sequences constitute essential elements of purposeful human behavior. However, there is still considerable debate on how experience-driven changes related to skill learning are expressed at the neural systems level. The current functional magnetic resonance imaging (fMRI) study focused on changes in the neural representation of continuous movement sequences as learning evolved. Behavioral and neural manifestations of nonvisual motor practice were studied both within the time frame of a single scanning session, as well as after several days of extended practice. Based on detailed behavioral recordings which enabled the continuous characterization of the ongoing learning process at the single subject level, sequence-specific decreases in activation throughout a learning-related network of cortical areas were identified. Furthermore, the spatial layout of this cortical network remained largely unchanged after extensive practice, although further decreases in activation levels could be observed as learning progressed. In contrast, the posterior part of the left putamen showed increased activation levels when an extensively trained sequence needed to be recalled. Overall, these findings imply that continuous motor sequence learning is mainly associated with more efficient processing in a network of consistently recruited cortical areas, together with co-occurring activation pattern changes at the subcortical level

    A solution to the parameter-identification conundrum: multi-scale interaction potentials

    Get PDF
    Softening is a structural property, not a material property. Any material will show softening, but in this paper the focus is primarily on cement and concrete, which show this property very clearly owing to their coarse heterogeneity (relative to common laboratory-scale specimen sizes). A new model approach is presented, based on pair-potentials describing the interaction between two neighbouring particles at any desired size/scale level. Because of the resemblance with a particle model an equivalent lattice can be constructed. The pair-potential is then the behavioral law of a single lattice element. This relation between force and displacement depends on the size of the considered lattice element as well as on the rotational stiffness at the nodes, which not only depends on the flexibility of the global lattice to which the element is connected but also on the flexural stiffness of the considered element itself. The potential F−rF-r F − r relation is a structural property that can be directly measured in physical experiments, thereby solving size effects and boundary effect

    Crackling noise in three-point bending of heterogeneous materials

    Get PDF
    We study the crackling noise emerging during single crack propagation in a specimen under three-point bending conditions. Computer simulations are carried out in the framework of a discrete element model where the specimen is discretized in terms of convex polygons and cohesive elements are represented by beams. Computer simulations revealed that fracture proceeds in bursts whose size and waiting time distributions have a power law functional form with an exponential cutoff. Controlling the degree of brittleness of the sample by the amount of disorder, we obtain a scaling form for the characteristic quantities of crackling noise of quasi-brittle materials. Analyzing the spatial structure of damage we show that ahead of the crack tip a process zone is formed as a random sequence of broken and intact mesoscopic elements. We characterize the statistics of the shrinking and expanding steps of the process zone and determine the damage profile in the vicinity of the crack tip.Comment: 11 pages, 15 figure

    Size effects in statistical fracture

    Full text link
    We review statistical theories and numerical methods employed to consider the sample size dependence of the failure strength distribution of disordered materials. We first overview the analytical predictions of extreme value statistics and fiber bundle models and discuss their limitations. Next, we review energetic and geometric approaches to fracture size effects for specimens with a flaw. Finally, we overview the numerical simulations of lattice models and compare with theoretical models.Comment: review article 19 pages, 5 figure

    On the Relationship Between Complex Potentials and Strings of Projection Operators

    Full text link
    It is of interest in a variety of contexts, and in particular in the arrival time problem, to consider the quantum state obtained through unitary evolution of an initial state regularly interspersed with periodic projections onto the positive xx-axis (pulsed measurements). Echanobe, del Campo and Muga have given a compelling but heuristic argument that the state thus obtained is approximately equivalent to the state obtained by evolving in the presence of a certain complex potential of step-function form. In this paper, with the help of the path decomposition expansion of the associated propagators, we give a detailed derivation of this approximate equivalence. The propagator for the complex potential is known so the bulk of the derivation consists of an approximate evaluation of the propagator for the free particle interspersed with periodic position projections. This approximate equivalence may be used to show that to produce significant reflection, the projections must act at time spacing less than 1/E, where E is the energy scale of the initial state.Comment: 29 pages, LaTex, 4 figures. Substantial revision

    Characterization of radial turbulent fluxes in the Santander linear plasma machine

    Get PDF
    It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which longterm correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasma

    Gender Differences Regarding the Impact of Math Anxiety on Arithmetic Performance in Second and Fourth Graders

    Get PDF
    The development of math skills is crucial for adequate functioning in academic and professional settings as well as in daily life. A factor that has been shown to negatively influence performance and acquisition of math skills is math anxiety. With the high prevalence of math anxiety in society and the long lasting effects on math performance, it is important to study the relation between math anxiety and math performance in young children. Since math anxiety is often more pronounced in women than in men, it is essential to take the effect of gender into account. While the effect of gender on the relation between math anxiety and math performance has been studied in adults and adolescents, less research has focused on children, especially children at young ages. To fill this gap, the current study examined how the relation between math anxiety and math performance differed between boys and girls in early elementary school years. Math anxiety and math performance was assessed in 124 second- and fourth-grade children (67 girls and 57 boys). Although boys and girls showed more or less equal levels of math anxiety and performed similarly at the arithmetic task, correlation analyses showed that only in girls, math anxiety significantly correlated with math performance. Analyses investigating if math anxiety moderated the effect of gender and grade on math performance revealed significant differences between boys and girls. Higher levels of math anxiety only significantly and negatively moderated math performance in girls, with the greatest effect observed in 2nd grade girls. These findings highlight the importance of taking gender differences into account when studying the effect of math anxiety. The results showed that math anxiety is already negatively linked to math performance in girls as early as second grade. The present findings emphasize the importance of the early identification and remediation of math anxiety in girls to prevent long lasting effects. Possible causes for the gender related differences will be discussed

    Illusory rotations in the haptic perception of moving spheres and planes

    Get PDF
    Recently, we have shown that a translating bar on which blindfolded participants position their hand is perceived as also rotating. Here, we investigated whether such an illusory rotation would also be found if a sphere or a plane (i.e. a stimulus without a clear orientation) was used as translating stimulus. We indeed found similar rotation biases: on average a stimulus that translates over a distance of 60cm has to rotate 25 degrees to be perceived as non-rotating. An additional research question was whether the biases were caused by the same underlying biasing egocentric reference frame. To our surprise, the correlations between the sizes of the biases of the individual participants in the various conditions were not high and mostly not even significant. This was possibly due to day-to-day variations, but clearly, more research is needed to answer this second research question
    • …
    corecore