-

-~
brought to you by .i CORE

View metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

Int J Fract (2013) 184:171-183
DOI 10.1007/s10704-013-9858-8

ORIGINAL PAPER

A solution to the parameter-identification conundrum:

multi-scale interaction potentials

J. G. M. van Mier

Received: 30 October 2012 / Accepted: 19 March 2013 / Published online: 5 June 2013

© Springer Science+Business Media Dordrecht 2013

Abstract Softening is a structural property, not a
material property. Any material will show softening,
but in this paper the focus is primarily on cement
and concrete, which show this property very clearly
owing to their coarse heterogeneity (relative to com-
mon laboratory-scale specimen sizes). A new model
approach is presented, based on pair-potentials describ-
ing the interaction between two neighbouring particles
at any desired size/scale level. Because of the resem-
blance with a particle model an equivalent lattice can
be constructed. The pair-potential is then the behavioral
law of a single lattice element. This relation between
force and displacement depends on the size of the con-
sidered lattice element as well as on the rotational
stiffness at the nodes, which not only depends on the
flexibility of the global lattice to which the element is
connected but also on the flexural stiffness of the con-
sidered element itself. The potential F — r relation is
a structural property that can be directly measured in
physical experiments, thereby solving size effects and
boundary effects.
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1 Introduction

A reliable model for fracture of concrete is helpful for
the design of strong and flexible structures that can
withstand a variety of complex loadings. Two proper-
ties of concrete are of great importance when consid-
ering fracture. First of all, the material has a very low
tensile strength, much lower than its compressive resis-
tance. The imbalance between tensile and compressive
strength becomes even larger when high (compressive)
strength concrete is applied. Also in the case of con-
fined compression the relative difference increases. The
second, for fracture very important characteristic of
concrete is its rough heterogeneity. The heterogene-
ity is a consequence of economics: reducing the price
of concrete through the addition of relatively cheap
sand and gravel to the more expensive binder (Port-
land) cement is common practice. Not only the costs of
concrete decrease, the properties improve in compari-
son to the properties of pure hardened Portland cement,
in particular the cement’s brittleness is partly over-
come. Models for concrete for structural applications
are generally based on continuum mechanics. This
400-year old methodology is based on the assumption
that material properties can be described using stress
and strain as state variables, or stated differently, the
mechanical behaviour of the material can be described
by means of average properties. Central to developing
a sound continuum-based theory is, not surprisingly,
the so called Representative Volume Element (RVE),
i.e. the smallest material volume needed to define the

@ Springer


https://core.ac.uk/display/159144685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

172

J. G. M. van Mier

average properties of the considered material. Conven-
tional wisdom learns that the RVE should at least be a
factor 3 to 5 larger than the largest heterogeneity found
in the material. For concrete, but also other materials,
the size of the grains is considered when defining the
RVE. From a series of uniaxial tensile tests on speci-
mens of varying size we concluded that the RVE should
be larger than at least 8 times the maximum aggregate
size, see Van Vliet and Van Mier (2000). This con-
clusion was based on the observation that beyond this
threshold the scatter in the experiments decreases and
becomes more-or-less constant. Small specimens, or
rather, small structures show clearly the effect of het-
erogeneity. The increase of scatter below the aforemen-
tioned threshold increases as one single aggregate may
be responsible for the structure’s behaviour. Next to
this, what we will call ‘RVE-based-on-fixed-material-
structure’, clearly the size of nucleating and actively
growing cracks must be considered. If a crack increases
to a size of the same order of magnitude as the charac-
teristic specimen size, boundary condition effects and
geometry-related effects cannot be ignored any longer.
In concrete cracks are not only caused by mechanical
loading, but environmental conditions may have a pro-
found influence as well. Differential temperature distri-
butions during the hydration of cement (when concrete
hardens) and/or differential moisture content in various
part of a structure lead to eigen-stresses and with that, if
the strength threshold is exceeded to crack nucleation
and growth.

Owing to the coarse heterogeneity of concrete severe
stress concentrations are present in the material when
external load is applied. The stress-concentrations are
the results from E-mismatch between the various mate-
rial phases in the composites and the material’s poros-
ity. An important factor leading to crack growth in
concrete at moderate external loading levels is the low
tensile strength of the interfacial transition zone (ITZ)
between matrix and aggregates. It is noted that when we
would scale-down the specimen/structure size below
the aggregate size, and zoom-in on a volume of cement
matrix, the same observations can be made. Compared
to the cement structure small sand grains will be rel-
atively coarse and cause stress-concentrations. Going
further down in scale will bring us to the scale of the
cement binder. Here we will find un-hydrated cement,
and the hydration products, which again can be seen
as aggregates (now the un-hydrated cement kernels)
embedded in a matrix with a clear smaller material
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structure (the structure of hydrated cement is found at
nm-size/scale).

Thus, obviously, concrete and also cement are highly
heterogeneous at various size/scale levels. It would
be tempting to address the heterogeneity of concrete
(and cement) via a fractal analysis, but it appears that
‘jumps’ are made along the dimensional scale, which
would demand for a multi-fractal approach. We will
not discuss these matters further, but rather suggest a
different solution that will incorporate heterogeneity at
any size/scale level implicitly. The proposed solution
is based on a lattice model. Lattice models have been
suggested as a tool for analyzing fracture of disordered
materials in the last two decades of the past century,
see for instance Roux and Guyon (1985), Termonia
and Meakin (1986) and Herrmann et al. (1989), among
many others. Since 1990 we have applied lattice-type
models for simulating fracture of concrete, which has
shown to be a valuable tool for obtaining a better under-
standing of fracture, be it that the approach is most
fruitful when at the same time relevant experiments are
carried out; see for instance Schlangen and Van Mier
(1992) and Lilliu and Van Mier (2003) for 2D- and
3D-versions of the ‘Delft’ lattice model. Quite essen-
tial in our approach has been to incorporate the struc-
ture of concrete (or cement) directly into the model.
Various methods are available to do so; the interested
reader is referred to Van Mier (2012) for an overview.
In a lattice model the material is modeled as a regu-
lar or irregular network of linear elements. For fracture
it appears that the most realistic results are obtained
if beam elements are used. By means of a finite ele-
ment program forces and deformations in the network
are calculated, and given a fracture criterion it can be
decided which of the elements will break. Fracture
is simulated by removing in each load-step just one
element, re-calculating the stress-redistributions after
removal, after which the next critical element is deter-
mined and removed. The disadvantage of this rather
coarse way of simulating fracture is that the calcu-
lated load-displacement curves are generally too brittle.
This can be repaired by including a softening stress-
crack opening relation for the lattice elements as pro-
posed by Ince et al. (2003). The obvious disadvan-
tage is that not only the computation becomes more
elaborate but also the softening stress-crack opening
is in principle ‘un-determined. The main advantage of
our lattice approach based on element removal is that
it is simple and transparent. No complicated iterative
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procedures are needed, which is quite essential if the
model is used in combination with experiments. The
goal is getting a better understanding of fracture mech-
anisms in disordered materials like concrete; it is cer-
tainly not an attempt to develop a simulation model
that can be fitted as closely as possible to experimental
data. Up till now always the decision to fracture an ele-
ment was based on a simple ‘stress-criterion’, i.e. when
stresses in a lattice element would exceed a prescribed
maximum stress (e.g. normal stress, flexural stress, etc.)
the element would fail instantaneously (elastic-purely
brittle). This implies that still continuum beam theory
is used to decide whether an element will fail or not. In
view of the statements regarding the RVE this is quite
extraordinary (and probably not correct) since in the
aforementioned lattice models the size of a lattice ele-
ment is in the same order as the material’s heterogene-
ity, for instance in concrete usually the lattice element
length is selected 3 to 4 times smaller than the smallest
aggregate particle incorporated in the material struc-
ture. Clearly there is reason to look at these matters in
a different way, which is precisely what we will do in
this paper.

The organization of the paper is as follows. In Sect.
2 we will argue that softening is a structural prop-
erty, not a material property. This distinction is quite
essential since it will be necessary to deviate from
cohesive fracture models. In Sect. 3 we will show that
the consequence of softening as a structural property,
multi-scale approaches are deemed to fail. Rather an
approach called ‘up-scaling’ from a pre-defined small-
est size/scale level seems a more realistic option, which
is then worked out in Sect. 4 for fracture of concrete.
The softening relation needed in the ‘structural lattice’
debated in Sect. 4 is no longer expressed in terms of
o and &, but rather in F and §, and must be regarded
as the structural property of a lattice element. A con-
sequence is that the sought relationship between F
and § depends on the structural boundary conditions
(fixed or pinned support; more general, the rotational
stiffness k. of the supports) and on the size of the
lattice element, viz. a structural property. This is
precisely what can be measured routinely in basic
experiments in concrete technology, namely the uni-
axial tensile properties and the (confined) compressive
behaviour. A further advantage of using a ‘structural’
lattice model is that very likely compressive fracture
can be captured in a lattice model as well. Buckling of
lattice elements can be considered and can be included

in the model in a relatively simple and straightforward
manner. Again here we find the significant influence of
boundary conditions and element slenderness (geome-
try), which is now incorporated directly into the model.
Finally, in Sect. 5 methods are suggested that can be
used to validate the new model approach. Without that
the model would be incomplete as so many models are
today.

2 What can be measured directly in fracture
experiments?

In popular cohesive models for concrete the crack-tip
closing stress is modeled according to the outcome
of a uniaxial tension test between fixed (non-rotating)
loading platen. This is what the fictitious crack model
developers tell us; see Hillerborg et al. (1976). Since
the early 1980s there have been numerous efforts to
establish a standard tension or bending test that would
help quantifying the properties needed in the fictitious
crack model. What all experiments tell, however, is
that none of the required properties for the fictitious
crack model are true material properties. These para-
meters are the tensile strength f;, the fracture energy
G 7, the maximum crack opening . and the shape of
the softening curve o (§). In some way they all depend
on specimen size, specimen geometry and boundary
conditions. Drawing an equivalent to fracture under
(confined) compression shows the same effects, albeit
in this case specimen geometry and boundary condi-
tions appear to be even more influential. In the case
of tensile fracture researchers often revert to in-direct
tests under the argument that uniaxial tension tests are
too difficult. Instead seemingly simple experiments are
carried out like the Brazilian splitting test or a (3-point
of 4-point) bending test on prismatic beams. These lat-
ter tests require back-analysis of the results, and thus a
number of assumptions are usually needed that are not
always realistic. Here we focus on uniaxial tension and
draw a parallel to uniaxial compression tests because
both tests can deliver the data needed for the ‘structural’
lattice model, which is presented in Sect. 4. Observa-
tions from uniaxial tension and uniaxial compression
tests lead to the following overview:

(1) When considering concrete the characteristic spec-
imen size should be larger than 100-150 mm (i.e. 5
to 8 times the maximum aggregate size); for con-
cretes with very large aggregates (dam concrete)
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this would lead to even larger specimen sizes.
Along the same lines of reasoning: for hardened
cement paste the minimum required specimen size
would be 500-1000 pLm.

In the fictitious crack model it has become common
practice to model the pre-peak stress-strain curve
as purely linear elastic. Experiments by Evans and
Marathe (1968) indicate that already at a relatively
low stress-level in the pre-peak regime microcrack-
ing starts. This is also the outcome from own exper-
iments and simulations, see Van Mier (2009).

The fictitious crack model tells us that microcracks
propagate and widen in the softening regime. This
is not true. Not only the experiments by Evans and
Marathe (1968) lead to a different conclusion, a
survey carried out by Mindess (1991) shows that
the extent of a fracture process zone, commonly
associated with the length of the crack-tip bridg-
ing zone, not only depends on specimen geome-
try but also on the accuracy of the crack detection
methods used. It is also easy to show that in the
softening regime a macroscopic crack dominates
the behaviour of a test specimen, see Van Mier and
Nooru-Mohamed (1990). These finding for uniax-
ial tension can easily be extended to (confined)
compression; see Van Mier (2012).

The specimen size has a significant influence
on the tensile strength of a specimen. In gen-
eral tensile strength will decrease with increas-
ing specimen size (Fig. la); see for instance
Van Vliet and Van Mier (2000) and Van Mier
and Van Vliet (2003). Several (competing) theo-
ries describe this decrease of structural strength
with specimen/structure size; see for instance
Weibull (1939), Bazant (1984) and Carpinteri et
al. (2003). The theory by Weibull is the only size
effect approach based on sound physics. The main
assumption here is that large structures have a
larger probability of containing defects and hence
are weaker. The other two models, sometimes
dubbed ‘laws’ are exercises in curve-fitting. Quite
important in both latter approaches is the notion
of the asymptotic behaviour for small and large
sizes (see Fig. 1a). Trying to validate the asymp-
totic behaviour in the small size range is impossi-
ble: as soon as the specimen/structure size becomes
smaller than the RVE experimental scatter will
become larger and a solid conclusion cannot be
drawn. The RVE is estimated at 8d, and indicated
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in Fig. la. The large-size asymptotic behaviour
cannot be established either because the laboratory
facilities will be decisive for the maximum size of a
specimen/structure that can be tested. In most labs
the characteristic specimen size will not exceed 2
m. A workable option would be to test larger spec-
imens floating on water. The large-size asymptote
is considered more important than the lower-size
asymptote for the sole reason that such results can
be used directly in structural engineering. Note that
at the lower-size asymptote, below the RVE, we
start testing different materials, namely the indi-
vidual constituents of concrete: hardened cement
paste and aggregate. In Fig. 1a conclusions about
models and experiments can only be drawn in the
area enclosed by the box of the diagram. Beyond
these boundaries only fruitless speculation is pos-
sible; many hours have been lost at conferences
in the past decade debating the best ‘size effect
law’ on the basis of the behaviour at the extremes.
It is obvious that it is impossible to discriminate
between the proposed models (Bazant 1984 and
Carpinteri et al. 2003) simply because it will never
be possible to validate the speculations by means
of physical experiment.

With increasing specimen/structure size the frac-
ture energy (i.e. the area under the post-peak soft-
ening curve) increases as shown in Fig. 1b. For
large sizes (> 1.6 m for 8-mm concrete) the curve
seems to level of towards a horizontal asymptote.
Therefore it is believed that fracture energy may
be a true material property, but very large speci-
mens are needed to make the actual measurements
for a given concrete. Models based on local frac-
ture energy gy (for instance Duan and Hu 2004)
are difficult to feed with experimental data sim-
ply because at the lower end of the size-scale mea-
surements of fracture energy will not yield realistic
values. The complete stress-deformation diagram
is affected when specimen/structure size increases.
Larger specimens show a more brittle behaviour;
just beyond peak even snap-back behaviour may
occur depending on the choice of control parame-
ter in the closed-loop testing system (see also ref-
erences mentioned in the next paragraph).

It is by no means clear for which characteris-
tic specimen size the softening diagram needed
in the fictitious crack model must be determined.
Obtaining a stable softening diagram is not easy if
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Fig. 1 Size effect on structural strength (a) and fracture energy
(b) from uniaxial tensile tests on dog-bone shaped specimens.
Testing below the RVE-size (taken here as 8 d,;, and indicated in
(a)) is not possible due to increasing scatter. Therefore assumed
asymptotic behaviour in the small size/scale regime can never
be validated experimentally. The fracture energy has been calcu-
lated up till 180 x m crack opening, denoted as G f, 180 and till full

the right equipment is lacking, see Van Mier and
Shi (2002). Considering that the fracture energy
grows towards an asymptotic value for larger speci-
mens, this might indicate that even larger specimens
(2-m range) would be required than based on con-
sidering the RVE. At those larger sizes maintaining
stability of crack growth in the softening regime is
most difficult because often snap-back behaviour
may occur. The difficulties can be overcome, how-
ever, as shown in Van Vliet and Van Mier (2000)
and Van Mier and Shi (2002), but require next to
the servo-hydraulic control system some additional
electronics.

(7) Boundary conditions have a pronounced influence
on the softening behaviour, both in tension and
under (confined) compression. More specifically, in

1500 2000
D [mm]

separation Gr. In the latter case measured curves were linearly
extrapolated to the point where they intersected with the x-axis.
Data are from Van Mier and Van Vliet (2003). The Weibull the-
ory has been fitted to the experimental data; for SEL and MFSL
only trends are shown indicating the asymptotic behaviour for
small and large sizes

tension the rotational freedom at the nodes affects
the tensile strength, the pre-peak non-linearity,
the shape of the softening curve and the fracture
energy. In (confined) compression, in addition to
the rotational freedom of the supports the fric-
tional restraint at the specimen-loading platen inter-
face must be considered. In Fig. 2 three differ-
ent cases are shown: fixed boundaries (k, = 00)
using a slender specimen (h/d > 2) in Fig. 2a,
pinned boundaries (k, = 0) using a slender spec-
imen in Fig. 2b and in Fig. 2c a stubby specimen
(h/d < 1) loaded between fixed boundaries. With
fixed boundaries two cracks will develop in the soft-
ening regime; restraining the rotations at the speci-
mens ends will cause the bump in the diagram as the
two cracks develop in sequence from two opposite
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sides of the specimen, see Van Mier (1986). In con-
trast, when a slender specimen is loaded between
pinned boundaries the first crack to develop is also
the crack leading to complete failure of the spec-
imen, i.e. no secondary cracking can occur. The
fracture energy is markedly smaller in the sec-
ond case as a direct consequence of the reduced
crack area; the tensile strength is smaller under
pinned boundaries in comparison to fixed bound-
aries; see Van Mier et al. (1995). When a stubby
specimen is used instead of a slender specimen the
stress-redistributions occur earlier, around peak,
and results by Hordijk (1991) show that the pre-
peak part of the diagram becomes more curved, the
deformation at peak-load increases and the ‘bump’
has disappeared. The result is shown schematically
in Fig. 2c. More recently, Akitaetal. (2007) showed
that the specimen shape has a significant effect on
tensile strength as well.

(8) As aconsequence of the size effect on strength and
deformation, and the influence of boundary rota-
tions it is impossible to choose the ‘best’ or ‘most
appropriate’ type of experiment for determining the
softening diagram of concrete in tension and with
that the closing stress-profile in a cohesive frac-
ture model. The point of view that comes closest
to all results is that softening is a ‘structural prop-
erty’, rather than a ‘material property’. It is impos-
sible to separate boundary effects from material
effects in all these experiments. The main reason
is that a crack with a size comparable to the speci-
men/structure dimensions is developing, and like in
classical fracture mechanics a correction for these
effects must be incorporated in any model trying

(a) FIFy (b) F/F,

to deal with the aforementioned phenomena. Thus,
the behaviour measured in a uniaxial tensile test
is valid only for the chosen specimen size and the
applied boundary conditions. The resulting F' — §
relation should be used directly in a model, as this is
the only un-biased result that can be derived from an
experiment. We will return to these matters in Sect.
4. It should be noted that the last remaining ‘contin-
uum state variable’ in the fictitious crack model has
been dropped; rather than giving results in terms of
average stress over the specimens cross-section it
will be an improvement to present matters directly
in force and displacement, thereby also incorporat-
ing the pre-peak behaviour in the formulation. Note
that this is a significant deviation from the fictitious
crack model.

For compressive fracture the same situation emerges,
see Van Mier (2009, 2012). Next to the chosen bound-
ary rotations also frictional restraint between loading
platen and specimen ends will affect the measurements.
Higher boundary restraint results in a higher compres-
sive strength, larger deformations at peak stress and
a shallower softening branch. The interested reader is
referred to my recent book for a complete overview of
all factors affecting compressive fracture; see Van Mier
(2012). The aforementioned effects will also be found
under confined compression, provided the confinement
stays below the brittle-to-ductile transition.

In conclusion to this section it can be stated that it
does not make sense to continue with cohesive fracture
models for concrete. The essential parameter, the o —w
relation is not a ‘material property’ but must be seen as
the response of the complete specimen-machine sys-
tem. Softening is a ‘structural property’. In Sect. 4 we

(c) F/F,

decreasing
size

1.0 1 1.0

decreasing
size

4
kr =00
decreasing k= o0
1.0 size
v

; 0
0 deformation & [mm] 0

Fig.2 Effectofboundary rotations on tensile stress-deformation
diagram of concrete. In a and b a slender specimen is loaded
between fixed (non-rotating) loading platen and pinned (freely
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Fig.3 Two images of a
polished surface of
hardened cement paste,
before (a) and after
indentation with a
Berkovich diamond tip. The
almost white particles are
the remaining un-hydrated
cores of partially hydrated
cement grains. Light gray
and dark gray are the low
and high-density calcium
silicate hydrates (CSH), and
black is porosity. After Van
Mier (2007)

will see how we can still work with such a relation-
ship.

3 Multi-scale modeling?

Recently there has been quite some interest in multi-
scale modeling. At the smallest considered size/scale-
level the behaviour of the constituents of a compos-
ite are determined, for example, and used in sequen-
tial analyses at higher size/scale levels, all the way
up to the macroscopic (or engineering) level. Does
this make sense? It will only work when at the small-
est size/scale true material properties are used. In
scaling-up to larger size/scale levels boundary effects
and size effects can be incorporated, which would
lead to correct results at the macroscopic level. The
question is thus: are we capable of determining true
material properties at the smallest size/scale? In rela-
tion to this question immediately a second one can be
posed, namely: what is the most appropriate ‘small-
est’ size/scale to start from? Let us assume that we
are dealing with concrete and the appropriate lower
size/scale-level is the [um]-level where the structure of
hydrated cement can be seen in great detail. In Fig. 3
the structure of cement at the [um]-size/scale is shown,
before and after an indent with a Berkovich diamond
tip. The smooth gray area at the right corner of Fig. 3a
is part of a sand grain, the more-or-less white particle
in the center is an un-hydrated cement grain (approxi-
mately 50 pum across), the smaller darker gray patches
forming the matrix between the sand and un-hydrated
cement particles is hydrated cement, interspersed with

porosity, which appears as black specs. The hydrated
cement usually comes in two forms: low-density Cal-
cium Silicate Hydrates (in short: CSH) away from
the un-hydrated kernel, and high-density CSH directly
in contact with the un-hydrated cement grain. In the
smallest-scale part of the multi-scale model we need
to incorporate all these material phases and, in addi-
tion, the interfaces between the various components. A
minimum model would require knowledge about the
mechanical properties of un-hydrated cement (which
is a composite by itself, as can be seen in Fig. 3b after
the indentation has been made), low- and high density
CSH and at least 3 types of interfaces. The indenta-
tion shown in Fig. 3b is one of the few (in-direct) tests
available for determining the mechanical properties of
these material phases. For instance, Constantinides and
Ulm (2004) have attempted to determine the Young’s
modulus of low- and high-density CSH by means of
indentation tests, and reported a higher modulus for
high-density CSH in comparison to low-density CSH.
Problems in indentation testing are numerous, and just
the simple fact that the tests are in-direct makes them
suspicious. As an alternative one can try to carry out
uniaxial tension tests (see for instance Trtik et al. 2007).
Machining tiny specimens of hardened cement paste,
or isolating small probes made of the individual cement
hydrates (see below) is tedious, and often leads to using
larger specimens that contain all the aforementioned
material phases. Using a micro-mechanical model one
would then have to perform back-calculations and try to
estimate the properties of the various material phases.
For certain, not a simple task and not a small task
either.
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An alternative route is to scale-down from the micro-
mechanical tensile test and try to obtain specimens
consisting of pure cement phases (low-density CSH,
high-density CSH, calcium hydroxide and un-hydrated
cement), for instance by using a focused ion beam
(FIB). This is certainly not an easy task either, but
can be done. If we have succeeded in producing the
specimens and testing them as well, the same prob-
lems that we discussed in the previous Section will
return: what to do with size effects and boundary con-
ditions? The answer will not change: again we are mea-
suring structural properties rather than material prop-
erties, except perhaps for the Young’s modulus and
the fracture energy, but these are certainly not suffi-
cient for constructing a fracture model. So, the sugges-
tion to use a lattice model and to feed into the model
directly the structural properties of a lattice element
might be a workable approach. In the next Section we
will explore the advantages and disadvantages of such a
model.

4 Structural lattice based on multi-scale
interaction potentials (F-r)

There is a resemblance between the shape of the
attractive part of an atomic potential and the tensile
force-deformation diagram for concrete, see Van Mier
(2007). A well-known form for the atomic potential for
noble gases is the Lennard-Jones (LJ) potential, which
may be written as:

Vi (r) =_4|:(z>12_(g)6j|’ 0
e r r

where o and ¢ are units of length and energy, respec-
tively. The potential describes the balance between
attractive and repulsive forces at the level of atoms.
Is the distance between two atoms below the equilib-
rium separation ry, the repulsion must be overcome and
the atoms must be forced to remain at the prescribed
distance. With increasing separation distance between
the atoms the energy needed decreases. Equation (1)
can be rewritten as:

£ o[- )]

A relation between the force F to keep the atoms
at prescribed separation distance 1/r. The powers n
and m can be varied to obtain the required shape of the
potential. In Fig. 4 we show the shape for the parameter
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Fig. 4 Variation of the power m in Eq. (2) leads to the family
of potentials shown in this Figure. The shape corresponds to the
force-deformation diagrams for concrete under uniaxial tension.
After Van Mier (2007)

setting o = 1,n = 6, « = —4, and m varies between
2 and 20. The curves flip over when m > 6. The family
of curves above this threshold resembles the shape of a
family of force-deformation curves from uniaxial ten-
sion tests on concrete, as shown for instance in Fig. 2.
It is therefore tempting to investigate whether the sim-
ple formulation can be used at higher size/scale-levels
as well. Note that the family of curves has been shown
relative to the response of a specimen of reference size
Dy, having a maximum force F,.

Beranek and Hobbelman (1992, 1994) showed that
a similarity exists between a particle model and a beam
lattice model. Starting point was the analysis of a stack
of equal-sized spherical particles in contact. The defor-
mations of this model were compared with those of a
beam lattice. Lattice beams were assumed to connect
the centers of two neighbouring particles. For a cer-
tain size of the lattice beams the similarity was perfect,
indicating that both models would lead to the same
result. The idea is now as follows. A tensile test on a
prismatic specimen is interpreted as the potential for a
pair of particles of the same size. The so-called pair-
potential is thus assumed to apply at larger size/scale
levels than the atomic level, even all the way up to the
macroscopic size/scale level. Testing a specimen at the
required size/scale will yield immediately the required
potential. As we show in Fig. 5, we can thus establish
the potential at various size/scale-levels such as the
nano-, micro-, meso- and macro-levels. Nano would
probably be far-fetched when dealing with cement and
concrete but the behaviour of the material at the other
scales is quite relevant.

Let us now consider the two different interpreta-
tions of the meso-structure of concrete as shown in
Fig. 6a, b. Following the interpretation of Fig. 6a con-
crete is seen as a three-phase composite, consisting
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Fig. 5 Pair-potentials for application in a beam-lattice model at
various size/scale levels (nano-, micro-, meso- and macro-level).
After Van Mier (2012). Note that the potential is active between
two particles of identical size; the distance between the particles
is here shown exaggerated to indicate that only normal forces are
considered between the interacting particles

of cement-matrix in which the various aggregates are
embedded. Between the two phases is an interfacial
transition zone, which has relatively low strength, and
is in fact the weakest part of the concrete structure.
Since the matrix is shown here as a continuous phase,
we could interpret this visualization as the situation
after hydration. The matrix is built up from the small-
est sand grains that have not been explicitly included
in the model, the Portland cement, and, if present, fly-
ash and/or condensed silica. In the lattice model that
we built in Delft and Zurich, as a series of consec-
utive PhD-projects, the visualization of Fig. 6a was
taken as a starting point. The regular or random lat-
tice was simply projected on top of the 3-phase mate-
rial structure and properties were assigned depending
on where a certain lattice element would be located,
see Fig. 6c. In Fig. 6b concrete is depicted as a stack
of spherical particles of varying size. In a way this
is the situation before the cement hydrates; only the
water needed for hydration is not shown in this Fig-
ure (note that the mixing water in concrete is initially
absorbed at the particle’s surfaces and possible excess
water will gather in voids between the particles). All
particles sizes are present: from the largest [mm]-size
aggregates to the smallest (sub-[um] size) fly-ash and
condensed silica particles with the cement grains of
a size falling between these extremes. With such a
hierarchical system the densest possible material struc-
ture can be obtained, which will have the highest pos-
sible strength. The material interpretation of Fig. 6b
can also be turned into a lattice. By simply connect-
ing the centers of neighbouring particles a lattice is
constructed. Each lattice element represents the inter-

action between the two neighbouring particles. Inter-
preting the system as just a bunch of pair-interactions
is probably too simple, and higher order interactions
may be included, at the cost of a loss in transparency
of the model. In Fig. 6d the connectivity between the
particle centers is shown, in Fig. 6e the remaining
lattice.

The potential law, Eq. (2) describes the behaviour of
a lattice element, but an essential adjustment must be
made. The potential used in our lattice model depends
on the actual size of the individual lattice elements,
and on the rotational support stiffness at both nodes,
i.e. the connectivity to the other lattice elements. The
rotational stiffness at the supports depends not only
on the connectivity to the rest of the lattice but also
on the flexural stiffness of the lattice element itself. So,
rather than descending to a so-called material level, and
describing the properties of the lattice elements via con-
stitutive equations, we remain at the ‘structural level’
and describe the properties of each lattice element
directly as a function of size and support conditions.
The complication that arises in conventional cohesive
fracture models is solved, namely the dependence of
cohesive fracture properties on element size and bound-
ary conditions is now implicitly included in the model.
Figure 7 shows examples of (size-dependent) poten-
tials for three different boundary conditions and vary-
ing specimen slenderness. Specific characteristics of
a lattice element are included in the F — r poten-
tial. For instance the ‘bump’ in the softening curve
when a slender lattice element is tested between fixed
boundaries is included in the potential function. It is
not seen as an ‘inconvenience’ that at all costs must
be removed from the model. No, it is just part of the
behaviour of that particular lattice element when the
element’s ends are fixed against rotations. Likewise we
will have to use the smooth curve for a lattice element
between pinned supports, which is actually a condi-
tion that will not be found in a beam lattice model, and
the increased pre-peak deformations for a stubby lat-
tice beam between fixed supports. The latter case may
appear frequently since in the beam lattices explored
to date always relatively stubby elements have been
used, which came from the demand to justify the elastic
lattice properties to those of a real concrete specimen
or structure; see for instance in Schlangen and Mier
(1994).

Returning to the model of Fig. 6d, e, which was
derived from the concrete material structure of Fig. 6b,
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we can easily see the implications of this model. For
compression the effects from bc on lattice element
response are even more pronounced in comparison to
the effects shown here for tension; see the overview in
Chapter 8 in Van Mier (2012). The same approach as
sketched above can be applied, however. As an exam-
ple consider the particle stack of equal-sized disks
(2D is considered for explaining the matter here) sub-
jected to external compression in Fig. 8a. The con-
tact forces between the particles are either compres-
sive or tensile (splitting forces will occur between hor-
izontal oriented particle pairs), as shown in the equiv-
alent lattice model. If the disks are of varying size
the lattice element sizes vary correspondingly and the
potential functions describing the relation between lat-
tice element force F and deformation r will vary as
well.

Fig. 6 Two different
interpretations of the (a)

matrix /

meso-structure of concrete:
a concrete as a three-phase
composite of matrix,
aggregate and interfacial
transition zone (ITZ), and b
as a stack of particles of
different size. The model of
(a) has been used frequently
in the past: a regular or
random lattice was
projected on top of the
material structure and the
lattice elements would be
assigned properties
according their location on (C)
the material structure as
shown in (¢). In the model
of (b) particles can be
anything from gravel, sand,
condensed silica, Portland
cement, fly-ash, and so on.
The particle stack of (b) can
form the basis for the
construction of a lattice as
shown in (d) and (e), which
would form the basis of the
‘structural lattice’ discussed
in this paper

Interfacial Transition
Zone (ITZ)
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interface (ITZ)

5 Which experiments are essential?

In the model approach suggested in the previous section
the behaviour of a lattice element is described directly
in terms of force and deformation. The consequence is
that for each lattice element size and bc the behaviour
must be estimated from experiments. How can this be
done? In the first place the task will be simplified by
considering a limited set of bc’s, which could be iden-
tified from elastic analyses of a corresponding beam
lattice. The size of the lattice elements can be set using
the approach in Schlangen and Mier (1994). After the
rotational stiffnesses of the two nodes of an element
have been established, we know how large the speci-
men should be as well as the rotational support stiff-
nesses. After that it is rather simple and straightforward
to conduct the experiment. The main advantage of the

(b)

zoom gives a similar particle
stack at a smaller scale

porosity:

(pITZ = (p matrix

aggregate

(d)
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Fig. 7 Examples of pair-potentials F/F, — r for three different
structural conditions of the lattice element: a slender lattice ele-

ment loaded between fixed (no-rotating) ends, b slender lattice

Fig. 8 Stack of equal-sized disks subjected to external com-
pression (a). Tensile splitting forces develop between horizontal
pairs and compressive stresses are transmitted between vertically
arranged particle pairs or inclined pairs. In (b) the equivalent

procedure sketched here is that the basis of the model
approach is defined from the constraints set by labora-
tory experiments. The model is defined based on what
we can actual derive from physical experiments and
no ad-hoc assumptions are necessary. As we have dis-
cussed in Sect. 2 properties for cohesive crack models
are dependent on specimen size and bc, and in that
respect cohesive crack models are rather useless. The
situation is more severe for compression than for ten-
sion. With the new approach one could argue that many
different specimen sizes and bc’s must be tested. Indeed
this is the case, but probably the number of cases can
be reduced significantly by simplifying the material
structure to some extent, for instance leaving out all
particles below a certain size-threshold. Such simplifi-
cations were also made in the lattice model mentioned

(b)

separation 1/r 0 separation 1/r
element loaded between pinned ends, and ¢ stubby lattice ele-

ment between fixed ends

tension compression
TN
Sk ( J) ¥
(==t ) e e 7
pNR I N Py ( S, \) /7
: : Y e TN
——te— Y
kr.iE K gkr?i
: A

lattice element and its boundary conditions are shown. The input
potential is simply what is measured for such a lattice element
in a physical experiment

before (Schlangen and Van Mier 1992 and Lilliu and
Van Mier 2003), but the model outcomes will still be
useful for obtaining a profoundly improved insight in
the fracture behaviour of cement and concrete. Unfor-
tunately the simplicity and transparency of the original
lattice model are lost to some extent. Yet, the fit of the
load-displacement curve should improve substantially.
Since any type of structure is calculated as such (i.e.
reconstructing the exact boundary conditions), there is
no need to assume that some properties are ‘material
properties’. We simply calculate the effects from struc-
ture size and boundary conditions and the effort will
be rewarded because the model starts from the behav-
iour of single lattice elements that can actually be mea-
sured in laboratory experiments. In principle the ficti-
tious crack model also predicts size effects; yet there
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an un-resolved problem remains, i.e. softening is not a
material property.

Next to the tests aimed at establishing the potential-
law for the individual lattice elements, large scale
tests on larger material volumes are quite essen-
tial, in particular the determination of the evolution
of the crack populations under a variety of loading
paths. These large-scale tests are needed to establish
fracture mechanisms. A useful approach is the use of
X-ray tomography, which can provide the evolution of
the full three-dimensional crack population in time; see
for instance Trtik et al. (2007) and Meyer et al. (2009).

6 Conclusion

In this paper we discuss an alternative to cohesive crack
models, namely a lattice model based on F' — r poten-
tials. The potential function to be used depends on the
size of the lattice element (slenderness //d) and the
rotational stiffness at the nodes. The rotational stiffness
at the nodes of each lattice element depends on the con-
nectivity of an element to neighbouring lattice elements
as well as on the flexural stiffness of the lattice ele-
ments themselves. The implication is that for a variety
of boundary conditions and a variety of lattice element
sizes the potential function must be measured, but the
enormous advantage is that what is needed as input in
the model can actually be measured in physical exper-
iments. The potential describes the structural behav-
iour of a lattice element. Material properties do not
exist, which is the main deviation here from assump-
tions in cohesive models where the softening curve is
considered as a material property. Basically we start
from what can be measured in a fracture experiment,
in stead of trying to measure haphazardly proposed
parameters. The model approach explained in this short
paper is an elegant manner to overcome the parameter-
identification conundrum which seems to affect most
fracture models today.
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