280 research outputs found

    Initial studies of mating disruption of the tomato moth, Tuta absoluta (Lepidoptera : Gelechiidae) using synthetic sex pheromone

    Get PDF
    The potential of the synthetic major component of T. absoluta (Meyrick) sex pheromone for mating disruption was studied in small plots (0.01 hectares) with fresh-market tomato crop. The effects of the application of the sex pheromone 3E,8Z,11Z-14: Ac (from 0 to 80 g a. i./ha) were assessed on male orientation to pheromone baited traps, mating in cages and plant damage. The highest levels of interruption in male orientation (60-90%) were found in plots treated with 35 to 50 g/ha of sex pheromone. However, no treatment with pheromone was capable of significantly reducing the percentage of mined leaflets or bored fruits or the frequency of mating in cages compared to the control plots. The failure in mating disruption technique may be attributed to the composition of the synthetic pheromone, doses used, high pest population density, and mated female migration to the area treated

    Chemical Defense of an Asian Snake Reflects Local Availability of Toxic Prey and Hatchling Diet

    Get PDF
    Species that sequester toxins from prey for their own defense against predators may exhibit population-level variation in their chemical arsenal that reflects the availability of chemically defended prey in their habitat. Rhabdophis tigrinus is an Asian snake that possesses defensive glands in the skin of its neck (nuchal glands\u27), which typically contain toxic bufadienolide steroids that the snakes sequester from consumed toads. In this study, we compared the chemistry of the nuchal gland fluid of R.tigrinus from toad-rich and toad-free islands in Japan and determined the effect of diet on the nuchal gland constituents. Our findings demonstrate that captive-hatched juveniles from toad-rich Ishima Island that had not been fed toads possess defensive bufadienolides in their nuchal glands, presumably due to maternal provisioning of these sequestered compounds. Wild-caught juveniles from Ishima possess large quantities of bufadienolides, which could result from a combination of maternal provisioning and sequestration of these defensive compounds from consumed toads. Interestingly, juvenile females from Ishima possess larger quantities of bufadienolides than do juvenile males, whereas a small sample of field-collected snakes suggests that adult males contain larger quantities of bufadienolides than do adult females. Captive-born hatchlings from Kinkasan Island lack bufadienolides in their nuchal glands, reflecting the absence of toads on that island, but they can sequester bufadienolides by feeding on toads (Bufo japonicus) in captivity. The presence of large quantities of bufadienolides in the nuchal glands of R.tigrinus from Ishima may reduce the risk of predation by providing an effective chemical defense, whereas snakes on Kinkasan may experience increased predation due to the lack of defensive compounds in their nuchal glands

    Chrysomelidial in the Opisthonotal Glands of the Oribatid Mite, Oribotritia berlesei

    Get PDF
    Gas chromatographic–mass spectrometric analyses of whole body extracts of Oribotritia berlesei, a large-sized soil-dwelling oribatid mite, revealed a consistent chemical pattern of ten components, probably originating from the well-developed opisthonotal glands. The three major components of the extract were the iridoid monoterpene, (3S,8S)-chrysomelidial (about 45% of the extract), the unsaturated hydrocarbon 6,9-heptadecadiene, and the diterpene β-springene (the latter two, each about 20–25% of the extract). The remaining minor components (together about 10% of the extract) included a series of hydrocarbons (tridecene, tridecane, pentadecene, pentadecane, 8-heptadecene, and heptadecane) and the tentatively identified 9,17-octadecadienal. In contrast, analysis of juveniles showed only two compounds, namely a 2:1 mixture of (3S,8S)-chrysomelidial and its epimer, epi-chrysomelidial (3S,8R-chrysomelidial). Unexpectedly, neither adult nor juvenile secretions contained the so-called astigmatid compounds, which are considered characteristic of secretions of oribatids above moderately derived Mixonomata. The chrysomelidials, as well as β-springene and octadecadienal, are newly identified compounds in the opisthonotal glands of oribatid mites and have chemotaxonomic potential for this group. This is the first instance of finding chrysomelidials outside the Coleoptera

    Chemical Defense of an Ozaenine Bombardier Beetle From New Guinea

    Get PDF
    We had occasion recently to study 3 live specimens of Pseudozaena orientalis opaca, an ozaenine carabid beetle (subfamily Paussinae, tribe Ozaenini) from New Guinea, and report here on the biology and chemistry of its defensive spray mechanism. A number of New World ozaenines had previously been studied chemically and shown to be “bombardiers” that discharge a hot quinonoid mixture (Aneshansley et al. 1969, 1983; Eisner and Aneshansley 1982; Eisner et al. 1977; Roach et al. 1979). Pseudozaena proved no exception

    Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach

    Get PDF
    With fossil representatives from the Silurian capable of respiring atmospheric oxygen, millipedes are among the oldest terrestrial animals, and likely the first to acquire diverse and complex chemical defenses against predators. Exploring the origin of complex adaptive traits is critical for understanding the evolution of Earth’s biological complexity, and chemical defense evolution serves as an ideal study system. The classic explanation for the evolution of complexity is by gradual increase from simple to complex, passing through intermediate “stepping stone� states. Here we present the first phylogenetic-based study of the evolution of complex chemical defenses in millipedes by generating the largest genomic-based phylogenetic dataset ever assembled for the group. Our phylogenomic results demonstrate that chemical complexity shows a clear pattern of escalation through time. New pathways are added in a stepwise pattern, leading to greater chemical complexity, independently in a number of derived lineages. This complexity gradually increased through time, leading to the advent of three distantly related chemically complex evolutionary lineages, each uniquely characteristic of each of the respective millipede groups
    corecore