96 research outputs found

    Tissue Determinants of Human NK Cell Development, Function, and Residence.

    Get PDF
    Immune responses in diverse tissue sites are critical for protective immunity and homeostasis. Here, we investigate how tissue localization regulates the development and function of human natural killer (NK) cells, innate lymphocytes important for anti-viral and tumor immunity. Integrating high-dimensional analysis of NK cells from blood, lymphoid organs, and mucosal tissue sites from 60 individuals, we identify tissue-specific patterns of NK cell subset distribution, maturation, and function maintained across age and between individuals. Mature and terminally differentiated NK cells with enhanced effector function predominate in blood, bone marrow, spleen, and lungs and exhibit shared transcriptional programs across sites. By contrast, precursor and immature NK cells with reduced effector capacity populate lymph nodes and intestines and exhibit tissue-resident signatures and site-specific adaptations. Together, our results reveal anatomic control of NK cell development and maintenance as tissue-resident populations, whereas mature, terminally differentiated subsets mediate immunosurveillance through diverse peripheral sites. VIDEO ABSTRACT

    The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration

    Get PDF
    Lonicera japonica is a wide-spread member of the Caprifoliaceae (honeysuckle) family utilized in traditional medical practices. This twining vine honeysuckle is also a much-sought ornamental, in part due to its dynamic flower coloration, which changes from white to gold during development. The molecular mechanism underlying dynamic flower coloration in L. japonica was elucidated by integrating whole genome sequencing, transcriptomic analysis, and biochemical assays. Here, we report a chromosome-level genome assembly of L. japonica, comprising nine pseudo-chromosomes with a total size of 843.2 Mb. We also provide evidence for a whole genome duplication event in the lineage leading to L. japonica, which occurred after its divergence from Dipsacales and Asterales. Moreover, gene expression analysis not only revealed correlated expression of the relevant biosynthetic genes with carotenoid accumulation, but also suggested a role for carotenoid degradation in L. japonica's dynamic flower coloration. The variation of flower color is consistent with not only the observed carotenoid accumulation pattern, but also with the release of volatile apocarotenoids that presumably serve as pollinator attractants. Beyond novel insights into the evolution and dynamics of flower coloration, the high-quality L. japonica genome sequence also provides a foundation for molecular breeding to improve desired characteristics

    Yin Yang 1 contains G-quadruplex structures in its promoter and 5′-UTR and its expression is modulated by G4 resolvase 1

    Get PDF
    Yin Yang 1 (YY1) is a multifunctional protein with regulatory potential in tumorigenesis. Ample studies demonstrated the activities of YY1 in regulating gene expression and mediating differential protein modifications. However, the mechanisms underlying YY1 gene expression are relatively understudied. G-quadruplexes (G4s) are four-stranded structures or motifs formed by guanine-rich DNA or RNA domains. The presence of G4 structures in a gene promoter or the 5′-UTR of its mRNA can markedly affect its expression. In this report, we provide strong evidence showing the presence of G4 structures in the promoter and the 5′-UTR of YY1. In reporter assays, mutations in these G4 structure forming sequences increased the expression of Gaussia luciferase (Gluc) downstream of either YY1 promoter or 5′-UTR. We also discovered that G4 Resolvase 1 (G4R1) enhanced the Gluc expression mediated by the YY1 promoter, but not the YY1 5′-UTR. Consistently, G4R1 binds the G4 motif of the YY1 promoter in vitro and ectopically expressed G4R1 increased endogenous YY1 levels. In addition, the analysis of a gene array data consisting of the breast cancer samples of 258 patients also indicates a significant, positive correlation between G4R1 and YY1 expressio

    Serum and Salivary IgE, IgA, and IgG4 Antibodies to Dermatophagoides pteronyssinus and Its Major Allergens, Der p1 and Der p2, in Allergic and Nonallergic Children

    Get PDF
    Allergic rhinitis (AR) is a public health problem with high prevalence worldwide. We evaluated levels of specific IgE, IgA, and IgG4 antibodies to the Dermatophagoides pteronyssinus (Dpt) house dust mite and to its major allergens (Der p1 and Der p2) in serum and saliva samples from allergic and nonallergic children. A total of 86 children were analyzed, from which 72 had AR and 14 were nonallergic healthy children. Serum IgE and serum/salivary IgG4 levels to Dpt, Der p1, and Der p2 were higher in allergic children whereas serum/salivary IgA levels to all allergens were higher in nonallergic children. IgE levels positively correlated with IgG4 and IgA to all allergens in allergic children, while IgA levels negatively correlated with IgG4 to Dpt and Der p1 in nonallergic children. In conclusion, mite-specific IgA antibodies predominate in the serum and saliva of nonallergic children whereas mite-specific IgE and IgG4 are prevalent in allergic children. The presence of specific IgA appears to have a key role for the healthy immune response to mucosal allergens. Also, specific IgA measurements in serum and/or saliva may be useful for monitoring activation of tolerance-inducing mechanisms during allergen specific immunotherapeutic procedures, especially sublingual immunotherapy

    Moderating effect of people-oriented public health services on depression among people under mandatory social isolation during the COVID-19 pandemic: a cross-sectional study in China

    Get PDF
    BACKGROUND: Public health measures, such as social isolation, are vital to control the spread of the coronavirus disease 2019 (COVID-19), but such measures may increase the risk of depression. Thus, this study examines the influencing and moderating factors of depressive symptoms among individuals subjected to mandatory social isolation. METHODS: An online cross-sectional survey was conducted to collect data from people under mandatory home or centralized social isolation in Shenzhen, China, from February 28 to March 6, 2020. The perceived risk of infection with COVID-19, perceived tone of media coverage, perceived quality of people-oriented public health services, and their depressive symptoms were assessed. Three rounds of stepwise multiple regression were performed to examine the moderating effects after controlling various variables, such as demographics, duration and venue of mandatory social isolation, infection and isolation status of family, time spent on COVID-related news, and online social support. RESULTS: Among the 340 participants, 57.6% were men, the average age was 35.5 years old (SD = 8.37), and 55.6% held a bachelor's degree or above. Individuals subjected to mandatory social isolation generally reported low levels of depressive symptoms. Perceived susceptibility to infection was relatively low, whereas perceived tone of media coverage was mainly positive. In terms of perceived quality of public health services, 12 (3.5%), 103 (30.3%), and 225 (66.2%) participants reported low, medium, and high quality of people-oriented services, respectively. Perceived susceptibility was positively associated with depression, whereas perceived tone of media coverage was negatively associated. The quality of people-centered public health services moderated the association between perceived risk and depressive symptoms and between perceived tone of media coverage and depressive symptoms. CONCLUSIONS: This study revealed the depressive symptoms among individuals subjected to mandatory social isolation during the COVID-19 pandemic and highlighted that frontline public health workers play a critical role in protecting public mental health

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product

    The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    Get PDF
    © 2016 Chorny et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation-related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell-independent and T cell-dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens.This study was supported by European Advanced grant ERC-2011-ADG-20110310, Ministerio de Ciencia e Innovación grant SAF2011-25241, and Marie Curie reintegration grant PIRG-08-GA-2010-276928 to A. Cerutti; Sara Borrell post-doctoral fellowships to A. Chorny; and US National Institutes of Health grants R01 AI57653, U01 AI95613, P01 AI61093, and U19 096187 to A. Cerutti. C. Cunha and A. Carvalho were funded by grants from Fundação para a Ciência e Tecnologia, co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte)., and from the Quadro de Referência Estratégico Nacional (SFRH/BPD/96176/2013 to C. Cunha and grant IF/00735/2014 to A. Carvalho) through the Fundo Europeu de Desenvolvimento Regional and Projeto Estratégico (LA 26 – 2013–2014; PEst-C/SAU/LA0026/2013). The financial support of the European Commission (FP7-HEALTH-2011-ADITEC-No.280873 and ERC-PHII-669415) to A. Mantovani is gratefully acknowledged.info:eu-repo/semantics/publishedVersio

    Characterization of an Orphan Diterpenoid Biosynthetic Operon from Salinispora arenicola

    Get PDF
    While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe–microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms
    corecore