140 research outputs found

    PEP-FOLD: an online resource for de novo peptide structure prediction

    Get PDF
    Rational peptide design and large-scale prediction of peptide structure from sequence remain a challenge for chemical biologists. We present PEP-FOLD, an online service, aimed at de novo modelling of 3D conformations for peptides between 9 and 25 amino acids in aqueous solution. Using a hidden Markov model-derived structural alphabet (SA) of 27 four-residue letters, PEP-FOLD first predicts the SA letter profiles from the amino acid sequence and then assembles the predicted fragments by a greedy procedure driven by a modified version of the OPEP coarse-grained force field. Starting from an amino acid sequence, PEP-FOLD performs series of 50 simulations and returns the most representative conformations identified in terms of energy and population. Using a benchmark of 25 peptides with 9–23 amino acids, and considering the reproducibility of the runs, we find that, on average, PEP-FOLD locates lowest energy conformations differing by 2.6 Å Cα root mean square deviation from the full NMR structures. PEP-FOLD can be accessed at http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOL

    Vasopressin V2R-Targeting Peptide Carrier Mediates siRNA Delivery into Collecting Duct Cells

    Get PDF
    Internalization of receptor proteins after interacting with specific ligands has been proposed to facilitate siRNA delivery into the target cells via receptor-mediated siRNA transduction. In this study, we demonstrated a novel method of vasopressin V2 receptor (V2R)-mediated siRNA delivery against AQP2 in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We synthesized the dDAVP conjugated with nine D-arginines (dDAVP-9r) as a peptide carrier for siRNA delivery. The structure of synthetic peptide carrier showed two regions (i.e., ligand domain to V2R (dDAVP) and siRNA carrying domain (nine D-arginine)) bisected with a spacer of four glycines. The results revealed that 1) synthesized dDAVP-9r peptides formed a stable polyplex with siRNA; 2) siRNA/dDAVP-9r polyplex could bind to the V2R of IMCD cells and induced AQP2 phosphorylation (Ser 256); 3) siRNA/dDAVP-9r polyplex was stable in response to the wide range of different osmolalities, pH levels, or to the RNases; 4) fluorescein-labeled siRNA was delivered into V2R-expressing MDCK and LLC-PK1 cells by siRNA/dDAVP-9r polyplex, but not into the V2R-negative Cos-7 cells; and 5) AQP2-siRNA/dDAVP-9r polyplex effectively delivered siRNA into the IMCD cells, resulting in the significant decrease of protein abundance of AQP2, but not AQP4. Therefore, for the first time to our knowledge, we demonstrated that V2R-mediated siRNA delivery could be exploited to deliver specific siRNA to regulate abnormal expression of target proteins in V2R-expressing kidney cells. The methods could be potentially used in vivo to regulate abnormal expression of proteins associated with disease conditions in the V2R-expressing kidney cells

    fpocket: online tools for protein ensemble pocket detection and tracking

    Get PDF
    Computational small-molecule binding site detection has several important applications in the biomedical field. Notable interests are the identification of cavities for structure-based drug discovery or functional annotation of structures. fpocket is a small-molecule pocket detection program, relying on the geometric α-sphere theory. The fpocket web server allows: (i) candidate pocket detection—fpocket; (ii) pocket tracking during molecular dynamics, in order to provide insights into pocket dynamics—mdpocket; and (iii) a transposition of mdpocket to the combined analysis of homologous structures—hpocket. These complementary online tools allow to tackle various questions related to the identification and annotation of functional and allosteric sites, transient pockets and pocket preservation within evolution of structural families. The server and documentation are freely available at http://bioserv.rpbs.univ-paris-diderot.fr/fpocket

    The Crystal Structure of PPIL1 Bound to Cyclosporine A Suggests a Binding Mode for a Linear Epitope of the SKIP Protein

    Get PDF
    BACKGROUND: The removal of introns from pre-mRNA is carried out by a large macromolecular machine called the spliceosome. The peptidyl-prolyl cis/trans isomerase PPIL1 is a component of the human spliceosome and binds to the spliceosomal SKIP protein via a binding site distinct from its active site. PRINCIPAL FINDINGS: Here, we have studied the PPIL1 protein and its interaction with SKIP biochemically and by X-ray crystallography. A minimal linear binding epitope derived from the SKIP protein could be determined using a peptide array. A 36-residue region of SKIP centred on an eight-residue epitope suffices to bind PPIL1 in pull-down experiments. The crystal structure of PPIL1 in complex with the inhibitor cyclosporine A (CsA) was obtained at a resolution of 1.15 A and exhibited two bound Cd(2+) ions that enabled SAD phasing. PPIL1 residues that have previously been implicated in binding of SKIP are involved in the coordination of Cd(2+) ions in the present crystal structure. Employing the present crystal structure, the determined minimal binding epitope and previously published NMR data, a molecular docking study was performed. In the docked model of the PPIL1.SKIP interaction, a proline residue of SKIP is buried in a hydrophobic pocket of PPIL1. This hydrophobic contact is encircled by several hydrogen bonds between the SKIP peptide and PPIL1. CONCLUSION: We characterized a short, linear epitope of SKIP that is sufficient to bind the PPIL1 protein. Our data indicate that this SKIP peptide could function in recruiting PPIL1 into the core of the spliceosome. We present a molecular model for the binding mode of SKIP to PPIL1 which emphasizes the versatility of cyclophilin-type PPIases to engage in additional interactions with other proteins apart from active site contacts despite their limited surface area

    In Silico Prediction and Analysis of Caenorhabditis EF-hand Containing Proteins

    Get PDF
    Calcium (Ca+2) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca+2-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca+2 binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain Ca+2 binding motifs. Here, we have performed homology modelling of CaM-like proteins using the crystal structure of Drosophila melanogaster CaM as a template. Molecular docking was applied to explore the binding mechanism of CaM-like proteins and IQ1 motif which is a ∼25 residues and conform to the consensus sequence (I, L, V)QXXXRXXXX(R,K) to serve as a binding site for different EF hand proteins. We made an attempt to identify all the EF-hand (a helix-loop-helix structure characterized by a 12 residues loop sequence involved in metal coordination) containing proteins and their Ca+2 binding affinity in Caenorhabditis by analysing the complete genome sequence. Docking studies revealed that F165, F169, L29, E33, F44, L57, M61, M96, M97, M108, G65, V115, F93, N104, E144 of CaM-like protein is involved in the interaction with IQ1 motif. A maximum of 170 EF-hand proteins and 39 non-EF-hand proteins with Ca+2/metal binding motif were identified. Diverse proteins including enzyme, transcription, translation and large number of unknown proteins have one or more putative EF-hands. Phylogenetic analysis revealed seven major classes/groups that contain some families of proteins. Various domains that we identified in the EF-hand proteins (uncharacterized) would help in elucidating their functions. It is the first report of its kind where calcium binding loop sequences of EF-hand proteins were analyzed to decipher their calcium affinities. Variation in Ca+2-binding affinity of EF-hand CaBP could be further used to study the behaviour of these proteins. Our analyses postulated that Ca+2 is likely to be key player in Caenorhabditis cell signalling

    Impact of physical activity on activity of daily living in moderate to severe dementia: a critical review

    Get PDF
    The objectives of this study were to describe the different modalities of physical activity programs designed for moderate to severe dementia and to identify their impact on functional independence in activities of daily living (ADL). A critical review of randomized controlled trials related to the impact of physical activity programs in moderately to severely demented persons on ADL performance and meta-analysis of the identified studies were performed. Among the 303 identified articles, five responded to the selection criteria. Four out of the five studies demonstrated limited methodological quality. In one high-quality study, physical activity programs significantly delayed deterioration of ADL performance. The program components and ADL assessment tools vary widely across studies. Although the proposed treatments have not proven their efficiency in improving the ADL status of the patients, they were able to limit the decline in ADL functioning. Future research is warranted in order to identify clinically relevant modalities for physical activity programs for people with moderate to severe dementia

    Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    Get PDF
    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.All authors are members of the EUCID.net network, funded by COST (BM1208). TE is funded by the German Ministry of research and education (01GM1513B). GPdN is funded by I3SNS Program of the Spanish Ministry of Health (CP03/0064; SIVI 1395/09), Instituto de Salud Carlos III (PI13/00467) and Basque Department of Health (GV2014/111017).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13148-015-0143-

    Methylation Defect in Imprinted Genes Detected in Patients with an Albright's Hereditary Osteodystrophy Like Phenotype and Platelet Gs Hypofunction

    Get PDF
    Pseudohypoparathyroidism (PHP) indicates a group of heterogeneous disorders whose common feature is represented by impaired signaling of hormones that activate Gsalpha, encoded by the imprinted GNAS gene. PHP-Ib patients have isolated Parathormone (PTH) resistance and GNAS epigenetic defects while PHP-Ia cases present with hormone resistance and characteristic features jointly termed as Albright's Hereditary Osteodystrophy (AHO) due to maternally inherited GNAS mutations or similar epigenetic defects as found for PHP-Ib. Pseudopseudohypoparathyroidism (PPHP) patients with an AHO phenotype and no hormone resistance and progressive osseous heteroplasia (POH) cases have inactivating paternally inherited GNAS mutations.We here describe 17 subjects with an AHO-like phenotype that could be compatible with having PPHP but none of them carried Gsalpha mutations. Functional platelet studies however showed an obvious Gs hypofunction in the 13 patients that were available for testing. Methylation for the three differentially methylated GNAS regions was quantified via the Sequenom EpiTYPER. Patients showed significant hypermethylation of the XL amplicon compared to controls (36 ± 3 vs. 29 ± 3%; p<0.001); a pattern that is reversed to XL hypomethylation found in PHPIb. Interestingly, XL hypermethylation was associated with reduced XLalphaS protein levels in the patients' platelets. Methylation for NESP and ExonA/B was significantly different for some but not all patients, though most patients have site-specific CpG methylation abnormalities in these amplicons. Since some AHO features are present in other imprinting disorders, the methylation of IGF2, H19, SNURF and GRB10 was quantified. Surprisingly, significant IGF2 hypermethylation (20 ± 10 vs. 14 ± 7%; p<0.05) and SNURF hypomethylation (23 ± 6 vs. 32 6%; p<0.001) was found in patients vs. controls, while H19 and GRB10 methylation was normal.In conclusion, this is the first report of methylation defects including GNAS in patients with an AHO-like phenotype without endocrinological abnormalities. Additional studies are still needed to correlate the methylation defect with the clinical phenotype

    Multiscale Coarse-Graining of the Protein Energy Landscape

    Get PDF
    A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states
    corecore