125 research outputs found

    The influence of copolymer composition on PLGA/nHA scaffolds´ cytotoxicity and in vitro degradation

    Get PDF
    The influence of copolymer composition on Poly(Lactide-co-Glycolide)/ nanohydroxyapatite (PLGA/nHA) composite scaffolds is studied in the context of bone tissue engineering and regenerative medicine. The composite scaffolds are fabricated by thermally-induced phase separation and the effect of bioactive nanoparticles on their in vitro degradation in phosphate-buffered solution at 37 °C is analyzed over eight weeks. The indirect cytotoxicity evaluation of the samples followed an adaptation of the ISO 10993-5 standard test method. Based on the measurement of their molecular weight, molar mass, pH, water absorption and dimensions, the porous scaffolds of PLGA with a lower lactide/glycolide (LA/GA) molar ratio degraded faster due to their higher hydrophilicity. All of the samples without and with HA are not cytotoxic, demonstrating their potential for tissue engineering applications.SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is really appreciated. This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and Grant SFRH/BD/111478/2015 (S.R). The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (Agencia Estatal de Investigación(AEI)/FEDER, Unión Europea(UE))info:eu-repo/semantics/publishedVersio

    3D cytocompatible composites of PCL/Magnetite

    Get PDF
    A study of Magnetite (Fe3O4) as a suitable matrix for the improved adhesion and proliferation of MC3T3-E1 pre-osteoblast cells in bone regeneration is presented. Biodegradable and magnetic polycaprolactone (PCL)/magnetite (Fe3O4) scaffolds, which were fabricated by Thermally Induced Phase Separation, are likewise analyzed. Various techniques are used to investigate in vitro degradation at 37 °C, over 104 weeks, in a phosphate buffered saline (PBS) solution. Magnetic measurements that were performed at physiological temperature (310 K) indicated that degradation neither modified the nature nor the distribution of the magnetite nanoparticles. The coercive field strength of the porous matrices demonstrated ferromagnetic behavior and the probable presence of particle interactions. The added nanoparticles facilitated the absorption of PBS, with no considerable increase in matrix degradation rates, as shown by the Gel Permeation Chromatography (GPC) results for Mw, Mn, and I. There was no collapse of the scaffold structures that maintained their structural integrity. Their suitability for bone regeneration was also supported by the absence of matrix cytotoxicity in assays, even after additions of up to 20% magnetite.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry Department under the ELKARTEK, HAZITEK and PIBA programs. Supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013, project POCI-01-0145-FEDER-028237 and grant SFRH/BD/111478/2015 (S.R.) is acknowledged.Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is gratefully appreciated. The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry and Education Department under the ELKARTEK and HAZITEK and PIBA (PIBA-2018-06) programs. Supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013, project POCI-01-0145-FEDER-028237 and grant SFRH/BD/111478/2015 (S.R.) is acknowledged

    Observation of isotropic-dipolar to isotropic-Heisenberg crossover in Co-and Ni-substituted manganites

    Get PDF
    High-precision ac susceptibility data have been taken on the La0.7Pb0.3Mn1?y (Co, Ni)yO3 (y = 0, 0.1, 0.2 and 0.3) manganite system over a wide range of amplitudes and frequencies of the ac driving field in a temperature range that embraces the critical region near the ferromagnetic (FM)?paramagnetic (PM) phase transition (occurring at the Curie point TC). Elaborate data analysis was performed that (i) enabled the first observation of a crossover from a three-dimensional (3D; d = 3) isotropic long-range dipolar asymptotic critical behavior to a d = 3 isotropic short-range Heisenberg critical regime as the temperature is raised from TC in the compositions y 6= 0 (no such crossover is observed in the parent compound, y = 0) and (ii) brought out clearly the importance of dipole?dipole interactions between the eg electron spins and/or between eg?t2g electron spins in establishing long-range FM order in the insulating state. The final charge and spin states of Co and Ni ions, substituting for the Mn3+ and/or Mn4+ ions, are arrived at by using a scenario of substitution that is consistent not only with the present results but also with the previously published structural, thermo-gravimetric, bulk magnetization, dc magnetic susceptibility and electrical resistivity data on the same system. The marked similarity seen between the magnetic behavior of the manganite system in question and the quenched random-exchange ferromagnets, within and outside the critical region, suggests that the percolation model forms an adequate description of the FM metal-to-PM insulator transition

    Evidence for two disparate spin dynamic regimes within Fe-substituted La0.7 Pb0.3 (Mn1-x Fex) O3 (0≤x≤0.2) colossal magnetoresistive manganites: Neutron spin-echo measurements

    Get PDF
    10 págs.; 7 figs.; 1 tab. ; PACS number s : 75.25. z, 75.30.Ds, 75.40.Gb, 75.47.GkThe spin dynamics of substituted colossal magnetoresistive (CMR) manganites of general formula La0.7 Pb0.3 (Mn1-x Fex) O3, 0≤x≤0.2 is investigated by means of neutron spin-echo measurements. Substitution of Mn by Fe leads to a strong decrease of the temperature of macroscopic magnetic long-range ordering with a concomitant enhancement of the CMR effect. For x=0.2, a long-range-ordered state is not achieved as a result of the increase in antiferromagnetic interactions brought forward by Fe+3 -Mn couplings. The results display two relaxations having well separated decay constants. A fast process with a relaxation time of about 10 ps within the paramagnetic phase is found for all compositions. It shows a remarkably strong dependence with temperature and sample composition as the apparent activation energy for spin diffusion as well as the preexponential term exemplify. The physical origin of such a fast relaxation is assigned to heavily damped or overdamped spin waves (spin diffusion) on the basis of some signatures of excitations having finite frequencies found for the parent compound La0.7 Pb0.3 Mn O3 at temperatures just below Tc, together with preliminary data on the effect of Fe doping on the stiffness constant. A slower relaxation is present for all compositions. Its temperature dependence follows the behavior of the macroscopic magnetization, and its intensity grows within the ordered ferromagnetic state. Its physical origin is ascribed to collective reorientation of nanoscale ferromagnetic domains on the basis of the wave-vector dependence of its relaxation rate and amplitude. © 2007 The American Physical Society.J.G. and J.M.B. thank the Spanish Ministerio de Educacion y Ciencia for financial support under research Grant No. MAT2005-0686-C04-03. F.J.B. and P.R. acknowledge financial support from the European Commission through NMI3 to carry out preliminary measurements at the FZJ facilities.Peer Reviewe

    Thermoremanence anomaly in Fe-Zr(B,Cu) Invar metallic glasses: Volume expansion induced ferromagnetism

    Get PDF
    We report the existence of a thermally induced sharp increase of thermoremanence around the Curie temperature of Invar-like Fe-Zr(B,Cu) soft magnetic glasses. Neutron-diffraction measurements indicate that a true enhancement of the average local magnetic moment, rather than only a change in the domain structure, occurs. Such enhancement has been tentatively attributed to the increasing volume expansion that takes place beyond the Curie temperature and reinforces ferromagnetism in some low-density clusters

    Crossover from superspin glass to superferromagnet in FexAg100-x nanostructured thin films ( 20 ≤ x ≤ 50 )

    Get PDF
    FexAg100?x granular thin films, with 20 x 50, have been prepared by the dc-magnetron sputtering deposition technique. With this technique we have been able to obtain samples comprising small Fe nanoparticles 2.5?3 nm embedded in a Ag matrix, remaining their size practically constant with increasing Fe content. Their magnetic behavior has been fully characterized by dc magnetic measurements between 5?350 K. They have revealed a crossover in the collective magnetic behavior of the Fe nanoparticles around a 35 at. %. Below such a concentration, a collective freezing of the magnetic moments is observed at low temperatures, while at high temperatures a transition, mainly mediated by dipolar interactions, to a magnetically disordered state is obtained. Above this concentration, direct exchange interactions overcome the dipolar magnetic interactions and a long-range order tends to prevail in the range of temperatures analyzed. ac magnetic measurements have indicated a crossover from a superspin glass x35 to a superferromagnetic x35 behavior for the magnetic moments of the Fe nanoparticles.This work was supported by the CICYT of Spain under Contracts No. MAT2008-06542-C04-02 and No. MAT2008- 06542-C04-04. SGIker technical support MEC, GV/EJ, European Social Fund is gratefully acknowledged. The financial support from the Basque Government Department of Education Project No. IT-347-07 is acknowledged

    Assemblies of magnetite nanoparticles extracted from magnetotactic bacteria: A magnetic study

    Get PDF
    Self-assembly has emerged as a suitable technique for tuning the properties of nanoparticles. In this work, we report the self-assembly of magnetosomes assisted by an external magnetic field. The magnetosomes are magnetite nanoparticles biomineralized by magnetotactic bacteria Magnetospirillum gryphiswaldense. These nanoparticles present truncated cubo-octahedral morphology with a mean diameter of ˜36 nm and are surrounded by a lipid bilayer membrane with a thickness ˜2-4 nm. The use of the appropriate preparation conditions, such as initial colloidal concentration and magnetic fields applied during deposition allowed us to obtain very reproducible self-assembled 2D patterns. Homogeneous ensembles of magnetosomes onto silicon and carbon surfaces are composed of elongated structures in the form of wide chains that cover a large area of the substrates. Transmission electron microscopy image and off-axis electron holography showed the map of the stray magnetic fields produced by these assemblies. The induced magnetic anisotropy was analyzed by measuring the hysteresis loops of the assemblies at different angles in a magneto-optical Kerr effect magnetometer. The evolution of the coercive field and remanence verified the presence of well-defined patterns. The experimental results were analyzed on the based of a biaxial model

    Propiedades magnetoeléctricas de una memoria magnetorresistiva basada en películas de FeCoNi/TiN/FeCoNi

    Get PDF
    [ES] Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å)/ TiN(50Å)/Fe15Co20Ni65(160Å). El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de ¿m lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.[EN] A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å)/ TiN(50Å)/Fe15Co20Ni65(160Å) three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had ¿m dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.Dr. G.V.Kurlyandskaya acknowledges the financial support of the Basque Government. The work has been supported by the Basque Government under the project N PI97/113 and Spanish CICYT under project MAT-98/965. We thank J. L. Muñoz for helpful discussion.Kurlyandskaya, G.; Barandiarán García, JM.; García Miquel, ÁH.; Vázquez Vilalabeitia, M.; Vaskovskiy, V.; Svalov, A. (2000). High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film. Boletín de la Sociedad Española de Cerámica y Vidrio. 39(4):581-583. https://doi.org/10.3989/cyv.2000.v39.i4.824S58158339

    Detection of the onset of nanocrystallization by calorimetric and magnetic measurements

    Get PDF
    It is generally accepted that measurements of the magnetic properties are more sensitive than measurements of the enthalpy changes in the detection of the onset of crystallization of ferromagnetic phases emerging from a paramagnetic amorphous alloy. In this work, it is shown that the formation of a very fine nanocrystalline microstructure can make this assumption incorrect. Under some circumstances, the nanocrystallization onset temperature obtained from magnetic techniques is higher than the one obtained from enthalpy changes. The phenomenon is explained in terms of the superparamagnetic behavior of the uncoupled nanocrystals at the very early stages of nanocrystallizatio
    corecore