
  

Nanomaterials 2017, 7, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/nanomaterials 

Article 

The Influence of Copolymer Composition on 
PLGA/nHA Scaffolds´ Cytotoxicity and  
In Vitro Degradation 

Esperanza Díaz 1,2,*, Igor Puerto 1, Sylvie Ribeiro 3, Senentxu Lanceros-Mendez 2,3,4 and  

José Manuel Barandiarán 2 

1 Departamento de Ingeniería Minera, Metalúrgica y Ciencia de Materiales, Universidad del País Vasco 

(UPV/EHU), Portugalete 48920, Spain; igor.puerto@ehu.es 
2 BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Spain; manu@bcmaterials.net 
3  Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal 
4 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; sylvieribeiro88@gmail.com (S.R.); 

senentxu.lanceros@bcmaterials.net (S.L.-M.) 

* Correspondence: esperanza.diaz@ehu.es; 

Received: 17 May 2017; Accepted: 28 June 2017; Published: date 

Abstract: The influence of copolymer composition on Poly(Lactide-co-Glycolide)/ 

nanohydroxyapatite (PLGA/nHA) composite scaffolds is studied in the context of bone tissue 

engineering and regenerative medicine. The composite scaffolds are fabricated by thermally-

induced phase separation and the effect of bioactive nanoparticles on their in vitro degradation in 

phosphate-buffered solution at 37 °C is analyzed over eight weeks. The indirect cytotoxicity 

evaluation of the samples followed an adaptation of the ISO 10993-5 standard test method. Based 

on the measurement of their molecular weight, molar mass, pH, water absorption and dimensions, 

the porous scaffolds of PLGA with a lower lactide/glycolide (LA/GA) molar ratio degraded faster 

due to their higher hydrophilicity. All of the samples without and with HA are not cytotoxic, 

demonstrating their potential for tissue engineering applications. 
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1. Introduction 

The manufacture of suitable scaffolds is of the utmost importance in tissue engineering 

applications. The porosity is essential for their functionality. These structures provide an initial 

mechanical support and three-dimensional template, facilitating cell adhesion, proliferation and 

differentiation and the transport of nutrients and metabolic wastes, until the regenerated tissue is 

structurally stabilized [1–3]. 

These scaffolds have to fulfill a series of structural and chemical requirements for tissue 

engineering applications. Not only must they be biocompatible, but they must in most cases also 

replace living tissues capable of growth regeneration and repair, with physical properties that are the 

consequence of evolutionary optimization over millions of years [4]. 

A large array of biocompatible materials has been used for this purpose, among which 

biodegradable polymers are increasingly widely used in tissue engineering. Poly(lactide), 

poly(caprolactone), poly(glycolide) and their copolymers have attracted a great deal of interest and 

have been widely used, because they show properties that are comparable to those of biological tissue 

with the advantage of predictable and reproducible mechanical behavior and degradation. 

Poly(lactide-co-glycolide) (PLGA) is a very popular biodegradable polymer, which has the approval 

of the U.S. Food and Drug Administration for human clinical applications and combines good 

mechanical properties, toughness, excellent processability and adjustable degradation rates. 
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Scaffolds should have an interconnected pore structure and high porosity to facilitate cellular 

adhesion and diffusion of nutrients to cells. A porous interconnected structure and the mean pore 

size are required to allow diffusion of waste products out of the scaffolds and to allow efficient 

binding of a critical number of cells to the scaffolds, respectively. The pores need to be large enough 

to facilitate cells to migrate into the structure. The mean pore size may vary depending on the  

cell type [5]. 

One of the most important aspects in porous scaffold development is the control of scaffold 

degradation behavior. The scaffold must maintain its mechanical properties and structural integrity 

during the tissue growing process, but it is supposed to degrade and eventually disappear as soon as 

its purpose is fulfilled, leaving space for newly-formed tissue. It is currently held that the ideal in 

vivo degradation rate may be similar or slightly less than the rate of tissue growth [6–8]. 

The degradation of aliphatic polyesters, similar to that of PLGA (poly lactideco-glycolide), 

occurs due to hydrolysis of their unstable ester bonds. End groups are firstly attacked, producing 

carboxylic acids (lactic and glycolic acids), which are non-toxic and can be removed from the body 

through the Krebs cycle, but which can act as a catalyst in the degradation process when trapped in 

the scaffold matrix, accelerating further degradation of the remaining polymer chains.  

Degradation behavior has been found to depend on a huge range of factors related with the 

intrinsic properties of polymers, such as molecular weight, copolymer composition, crystallinity, 

crystalline size and chain orientation, as well as sample dimensions and shape, including the 

structure porosity level and pore size. All of these parameters condition the access of water to ester 

bonds and can influence the degradation process [9–11]. 

The presence of nanohydroxyapatite (nHA) particles does cause a more irregular morphology, 

as these particles perturb the crystallization of the solvent and change the patterns of crystal growth 

forming more irregular crystals in the solvent when the fabrication of the scaffolds was by thermally-

induced phase separation (TIPS). Additionally, as demonstrated in previous studies, the addition of 

some bioactive particles can decrease the rate of degradation. The nanohydroxyapatite particles act 

as a physical barrier and block the entry of water, causing a decrease in the rate of scaffold 

degradation [9]. 

There are other external variables, such as temperature, pH and the buffering capacity of the 

medium in which the degradation occurs. Additionally, in vivo degradation may be accelerated by 

enzymatic cellular activity or cell-induced pH changes. Even if in vitro degradation models are 

unable to simulate all of these conditions, these studies provide important information on the 

degradation behavior of scaffolding. 

In this paper, thermally-induced phase separation (lyophilization) was employed to prepare 

PLGA scaffolds and PLGA/nHA composite scaffolds using two different copolymers: PLGA 53/47 

and PLGA 75/25. The temperature was strictly controlled for a convincing in vitro degradation test, 

because PLGA mainly degrades via chemical hydrolysis, and its biodegradation can be tested with 

the Arrhenius equation to determine the activation energy [12]. Changes in molecular weight and 

physical properties were studied, and we found that not only the additives, such as nHA, but also 

the copolymer composition might affect the degradation behavior. An indirect cytotoxicity 

evaluation of the samples was conducted through an adaptation of the ISO 10993-5 standard  

test method. 

2. Materials and Methods 

2.1. Raw Materials 

Poly(DL-lactide-co-glycolide) (PLGA) copolymers in molar ratios of 53/47 and 75/25, 

respectively, supplied by PURAC (PURASORB, Gorinchem, Netherlands, PDLG5004 and 

PDLG7502, respectively) were purified by dissolution in chloroform. The weight-average relative 

molecular weight of PLGA 53/47 was Mw = 94,800, Mn = 65,600 with a polydispersity of Mw/Mn = 

1.4452 and for PLGA 75/25 was Mw = 86,985 and Mn = 53,533 with a polydispersity of Mw/Mn = 

1.6250. These values were determined using gel permeation chromatography (GPC, Perkin Elmer 
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200, Triad Scientific, Manasquan, NJ, USA) in tetrahydrofuran (THF). GPC was performed with a 

tetrahydrofuran solvent using a reflective index detector with a Perkin Elmer 200 (Triad Scientific, 

Manasquan, NJ, USA) as the detector. Calibration was done in accordance with polystyrene 

standards with a flow rate of 1 mL/min. Nano-hydroxyapatite (nHA) was supplied by Aldrich 

Chemistry (St Louis, MO, USA), with a particle size >200 nm and Mw = 502.31 g mL−1. 1,4 Dioxane 

purchased from Panreac p.a. (Barcelona, Spain) was used as the solvent. Phosphate-buffered solution 

(PBS) in water, supplied by Fluka Analytical (Sigma Aldrich, St Louis, MO, USA) at a pH of 7.2, was 

used as the degradation fluid. 

2.2. Fabrication of Porous Scaffolds 

Pure PLGA and PLGA/nHA composite scaffolds of both copolymers were fabricated by 

thermally-induced phase separation (TIPS) followed by a freeze-drying technique. Briefly, PLGA was 

dissolved in 1,4 dioxane in a proportion of 2.5% (w/v), by stirring for 2 h at a temperature of 50 °C. 

After its complete dissolution, the resultant solution was poured into aluminum molds. At this step, 

nHA was blended by ultrasonic stirring for 5 min, in proportions of 10%, 30% and 50% of total 

polymer mass, to form the composite scaffolds. The solutions were frozen and freeze-dried for several 

days to extract the solvent completely. Foams such as porous scaffolds with a porosity of up to 90% 

were obtained by this method. 

2.3. Cytotoxicity Assay 

An indirect cytotoxicity evaluation of the samples was conducted with the adaptation of the ISO 

10993-5 standard test method.  

For the in vitro assays, membranes of 0.1 mg mL−1 were cut and sterilized by ultraviolet radiation 

(UV) for 2 h before cell seeding (1 h each side). Afterwards, the samples were washed 5 times with a 

phosphate-buffered saline (PBS) solution for 5 min to remove any residual solvent.  

Briefly, the extraction media were prepared by immersing the samples (0.1 g mL−1) in a 24-well 

tissue culture polystyrene plate with Dubbecco´s Modified Eagle´s Medium-high glucose (DMEM) 

(containing 1.0 g L−1 glucose (Gibco) supplemented with 10% FBS (Biochrom) and 1% P/S (Biochrom)), 

at 37 °C in 95% humidified air containing 5% CO2 and incubated for 24 h. Twenty percent 

dimethylsulfoxide (DMSO, Sigma Aldrich) was used as a positive control, and the cell culture 

medium was employed as a negative control.  

At the same time, the MC3T3-E1 pre-osteoblast cell line derived from Mus Musculus (mouse) 

calvaria were seeded in the 96-well tissue culture polystyrene plate at a density of 3 × 104 cells ml−1 

and then incubated for 24 h to allow for cell attachment on the plate. After 24 h, the culture medium 

from the 96-well tissue culture polystyrene plate was removed, and the as-prepared extraction 

medium was added to the wells (100 μL). Afterward, the cells were incubated for 24 h and 72 h, and 

at each control point, the evaluation of the cell viability was quantified with a 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 

The MTT assay measures the mitochondrial activity of the cells, which reflects the viable cell 

number. At each point in time, the medium of every well was removed, and a fresh medium 

containing 10% MTT solution (stock solution of 5 mg MTT mL−1 in PBS; Sigma Aldrich) was added. 

The viable cells with an active metabolism converted MTT into a purple-colored formazan product. 

After 2 h of incubation, the MTT crystals were dissolved with DMSO, and the optical density was 

measured at 570 nm.  

All quantitative results were obtained from four replicate samples with controls and were 

analyzed as the average of viability ± the standard deviation (SD).  

The percentage of cell viability was calculated with the following formula:  

Cell viability (%) =
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 ×  100 (1) 

2.4. In Vitro Degradation 
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Samples for in vitro degradation were cut into 0.5-cm2 rectangular pieces and weighed. The 

specimens were then placed in identical glass vials containing 10 mL of PBS, totally immersed and 

incubated in a thermostatic oven at 37 °C, under static conditions. At selected points in time (1, 2, 4, 

6 and 8 weeks), the specimens were recovered, carefully wiped to remove surface water and weighed 

to determine water absorption. The pH change in the degradation medium was determined using a 

PCE 228 pH meter from PCE Instruments (Alicante, Spain) and corrected by temperature controls. 

Finally, the samples were dried over 2 weeks to a constant weight that was recorded, in order to 

determine the weight loss.  

2.5. Characterization 

2.5.1. Water Absorption and Weight Loss 

Water absorption and weight loss were evaluated by weighing. The percentage water absorption 

Wa% was calculated with the following equation: 

𝑊𝑎% =
𝑊𝑤 − 𝑊𝑟

𝑊𝑟

 × 100 (2) 

where Ww is the weight of the wet/swallow specimen after removing surface water and Wr is the 

residual weight of a completely dry sample after degradation. Weight loss percentage (WL%) was 

estimated with the following equation: 

𝑊𝐿% =
𝑊0 − 𝑊𝑟

𝑊0

 × 100 (3) 

where the original mass of the sample is designated as W0. 

2.5.2. SEM Analysis 

The bulk morphology of the scaffolds was examined using scanning electron microscopy (SEM) 

(HITACHI S-3400N, HITACHI, Tokyo, Japan). Prior to analysis, the samples were coated with a layer 

of gold, in a JEL Ion Sputter JFC-1100 (JEOL, Peabody, MA, USA at 1200 V and 5 mA, to avoid sample 

charging under the electron beam. 

2.5.3. DSC Analysis 

The thermal characteristics of the polymer were determined using differential scanning 

calorimeter (DSC TA Instruments, Waters, NC, USA equipped with an intracooler. Approximately 

10 mg of polymer were placed in a crimp-sealed DSC hermetic aluminum pan. A nitrogen purge gas 

was used to prevent oxidation of the samples during the experiments, which were subjected to 

temperature scans ranging between −20 °C and 200 °C at temperature/time ratios of 10 °C/min. 

3. Results and Discussion 

3.1. Cytotoxicity 

The cytotoxicity of the different PLGA and PLGA/nHA composite samples using two different 

copolymers, PLGA 53/47 and PLGA 75/25, was evaluated by the MTT assay method against  

the MC3T3-E1 pre-osteoblast cell line. The results are presented in Figure 1. 

Figure 1 shows that none of the samples were cytotoxic after 72 h. According to ISO standard 

10993-5, samples are considered cytotoxic when the cell viability reduction is larger than 30%. The 

incorporation of bioactive reinforcements is considered as a powerful method to improve the 

properties of polymer [13]. Previous studies reported that these materials were not cytotoxic, and 

hydroxyapatite improved cell adhesion [14]. In this case, the cell viability of the samples shows values 

higher than 100%, after 72 h, which can be related to the increased proliferation due to the materials 

used. In fact, the presence of nHA has been proven to have an inductive effect on the proliferation of 

the osteoblast cells [15,16]. 
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In order to determine the suitability of the membranes for tissue engineering and biomedical 

applications, the cell morphology of cells grown on the PLGA membranes with nHA was assessed 

with the SEM assay. The representative scanning electron micrographs are shown in Figure 2. 

 

Figure 1. MTT cytotoxicity assays of MC3T3-E1 pre-osteoblast in contact with the as-prepared 

extraction media exposed to PLGA and PLGA composites with 30 and 50% nHA. 

  
(a) (b) 

Figure 2. Cell morphology of MC3T3-E1 pre-osteoblasts seeded on PLGA 75/25 (a) 10% nHA; and  

(b) 50% nHA samples after three days obtained by SEM. The scale bar is 10 µm for all samples. 

Figure 2 shows the cell morphology of MC3T3-E1 pre-osteoblast cells after three days of culture 

on the PLGA with nHA samples. Comparing the samples, the cells seem to maintain random 

arrangement on the membranes. Sheikh et al. demonstrated that the samples with nHA are good 

candidates for in-bone tissue regeneration because the introduction of these particles showed 

improvements in hydrophilicity, mechanical properties, viability of osteoblasts and complete 

formation of bone in in vivo experiments [17]. 

3.2. In Vitro Degradation 

Control over degradation kinetics is of vital importance for the manufacture of porous scaffolds. 

Degradation that is too fast could compromise the mechanical integrity of the scaffold, while if it is 

a)  
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too slow, the scaffold would interfere in the correct integration of the regenerated tissue. The scaffold 

should ideally have a speed of degradation equal to or slightly slower than the growth of  

the tissue [6,9,18,]. 

3.2.1. Mass Loss and Molecular Weight 

The reduction of the molecular weight and the increase of polydispersity are among the first 

indicators of polymeric degradation processes. The reduction in molecular weight occurred with the 

breakage of the polymer chains as a consequence of hydrolysis, and the increase in broken chains 

(shorter and with less molecular weight) increased polydispersity. 

The analysis of the samples with GPC, the results of which may be seen in Tables 1 and 2, permits 

the calculation of the weight-average molecular weight (Mw), number-average molecular weight 

(Mn) and polydispersity (I = Mw/Mn). A systematic reduction of the molecular weight is observed, 

practically from the start of degradation in both systems—PLGA 53/47 PLGA 75/25—under study, 

and this reduction is more accentuated in the scaffolds that have no bioactive particles. The scaffolds 

with nHA also underwent a loss of molecular weight, although this was notably lower than in the 

samples of pure polymer. The presence of nanoparticles had a shock absorber effect on the interface 

between PLGA and nHA, avoiding the penetration of PBS into the walls of the scaffold and breaking 

the degradation by neutralizing the catalytic effect of the carbonyl groups that formed when the 

polymer chains were broken. The concentration of nHA did not appear to be a decisive factor. For 

example, the reduction of the molecular weight of the samples with PLGA 75/25 was comparable to 

those with a greater concentration of nanoparticles. In fact, among the samples with nHA, those with 

30% nHA underwent a reduction in molecular weight that was slightly higher than the rest. This 

reduction is due to the presence of modified particles that modify the pores, which is another of the 

decisive factors in the degradation process. 

Table 1. Mw, Mn and I as a function of degradation time for PLGA (53/47) and PLGA (53/47)/nHA 

composite scaffolds. 

Degradation Time (Weeks) 
PLGA 53/47 

0% nHA 30% nHA 

Weight-Average Molecular Weight (Mw) 

0 94,800 94,800 

1 29,916 58,670 

2 - 35,425 

3 890.7 23,106 

4 - 23,811 

6 - 22,141 

8 - 22,936 

Number-Average Molecular Weight (Mn) 

0 65,600 65,600 

1 16,688 33,744 

2 - 10,708 

3 430 10,831 

4 - 11,690 

6 - 15,644 

8 - 10,923 

Polydispersity (I) 

0 1.445 1.445 

2 1.792 1.738 

3 - 3.308 

4 2.071 2.133 

6 - 1.415 

8 - 2.099 
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Table 2. Mw, Mn and I as a function of degradation time for PLGA (75/25) and PLGA (75/25)/nHA 

composite scaffolds. 

Degradation Time (Weeks) 
PLGA 75/25 

0% nHA 10% nHA 30% nHA 50% nHA 

Weight-Average Molecular Weight (Mw) 

0 86,985 86,985 86,985 86,985 

2 73,311 79,604 78,758 79,455 

3 72,334 75,392 73,433 78,577 

4 66,296 75,368 69,166 72,973 

6 56,212 68,749 57,371 66,178 

8 39,979 56,101 49,760 58,429 

Number-Average Molecular Weight (Mn) 

0 53,533 53,533 53,533 53,533 

2 46,131 48,388 48,979 43,404 

3 42,983 43,884 44,238 45,835 

4 39,782 45,490 41,345 41,808 

6 33,430 40,419 32,253 38,109 

8 19,524 31,412 29,689 33,255 

Polydispersity (I) 

0 1.650 1.625 1.625 1.625 

2 1.589 1.645 1.608 1.830 

3 1.682 1.718 1.659 1.714 

4 1.666 1.656 1.672 1.745 

6 1.681 1.701 1.778 1.736 

8 2.047 1.786 1.676 1.757 

Comparing the scaffolds fabricated with the two copolymers, we can see that PLGA 53/47 

underwent a much faster reduction in molecular weight than PLGA 75/25, so much so that the pure 

samples of PLGA 53/47 were almost completely degraded within three weeks. Minor losses of 

molecular weight were experienced in the PLGA (75/25) samples. The Mw is almost always double 

at the end of the grading period in the 75/25 system, due to the lower content of glycolic acid in the 

system. A higher content of hydrophilic glycolic acid units in the copolymers facilitates the 

absorption and diffusion of water and, as a result, hydrolysis [8,19]: the degradation rate therefore 

increased by as much as: 

PLGA 75/25 < PLGA 53/47  

Other researchers [19,20] who conducted studies on degradation observed that the loss of 

molecular weight in an en bloc degradation mechanism starts as soon as the polymer enters into 

contact with the water, while the loss of mass will not start immediately and, in any case, not until 

the polymer reaches a critical molecular mass. In our case (see Figure 3), all of the samples lost mass 

from the first week of degradation. The samples that lost most mass were those of pure PLGA: the 

samples of the PLGA 75/25 copolymer losing almost 6% of their original weight at eight weeks and 

those of the PLGA 53/46 copolymer losing 70% of their original weight.  

The scaffolds manufactured with PLGA 53/47 without bioactive particles were almost 

completely degraded at the end of eight weeks. In much the same way, the samples with nHA also 

presented a loss in mass, although a much lower one.  

The results appear to indicate that the scaffolds of PLGA 75/25 started to become degraded on 

the surface from the first week, especially those that contained no nHA, subsequently undergoing en 

bloc degradation, which is the habitual form of degradation for this type of polyester [6]. 
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(a) 

 
(b) 

Figure 3. Mass loss of: (a) PLGA (53/47)/nHA; and (b) PLGA (75/25)/nHA, composite scaffolds against 

degradation time. 

3.2.2. Water Uptake 

We may see that in Figure 4, for both copolymers under study, that there was very significant 

water uptake in the scaffolds up until the fourth week of in vitro degradation, after which the 

absorption rate stabilized. In addition, the water uptake of the samples without bioactive particles 

was far less than the water uptake of the samples that contained bioactive particles. If we compare 

both copolymers, we see that the samples that absorbed most water corresponded to PLGA75/25, 

which achieved much higher values than those of PLGA 53/47. PLGA 75/25 contains a higher 

proportion of lactide in its chain and behaves in a much more hydrophobic way, the water entering 

the scaffolding at first through its pores, and then, equilibrium is achieved between the absorption of 

PBS and the dissolution of oligomers, so it is very probable that the part of the chain that degrades 

first of all is that of the glycolic acid, which is much more hydrophilic than polylactide  This all 

indicates that the degradation mechanism in this case will be mixed, with the predominating 

influence of en bloc degradation that reduces the molecular weight, accompanied by a surface 

degradation, which explains the notable loss in weight.  
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(a) 

 
(b) 

Figure 4. Water absorption for: (a) PLGA (53/47)/nHA; and (b) PLGA (75/25)/nHA composite 

scaffolds as a function of degradation time. 

However, the inclusion of nHA modifies the hydrophobic condition of the polymer and favors 

its absorption in the buffer solution (PBS). This behavior has been observed by other authors [21,22] 

who concluded that the nHA could accelerate degradation by the hydrolysis of certain polymers 

when favoring water uptake. In our case, the nHA nanoparticles provoked high levels of water 

uptake, despite which, degradation of the samples was slower rather than quicker. The nanoparticles 

in our scaffolds acted as a physical barrier, absorbing the water, but complicating its diffusion 

towards the walls of the porous scaffold.  

The addition of high amounts of nanoparticles modified the morphology. Greater irregularity 

in the pores provoked by a larger amount of nHA for the samples of PLGA/50 wt% nHA might imply 

a less uniform distribution and an agglomeration of nHA particles, which formed bigger particles 

with smaller surface areas. This is why the samples of both copolymers made with a higher content 

of nanoparticles have a more irregular behavior (see Figures 3 and 4). The distribution of the 

nanohydroxyapatite plays an important role not only in the water uptake, but also in the degradation 

process itself. 

3.2.3. pH 

The pH variations of the degradation medium offer information on the liberation of acidic 

products as a consequence of the splitting reactions due to hydrolysis. In the same way, these 

variations in pH can condition the degradation by modifying the conditions of the medium [23]. 
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The general tendency for all of the samples was a moderate reduction in the pH of the 

degradation medium, as may be confirmed in Figure 5, except for the scaffolds manufactured with 

the copolymer PLGA 75/25, which tended to stabilize as from the fourth week of in vitro degradation. 

 
(a) 

 
(b) 

Figure 5. pH change of phosphate-buffered solution for: (a) PLGA (53/47)/nHA; and (b) PLGA 

(75/25)/nHA composite scaffolds against degradation time. 

Unlike what took place with PLGA 53/47, the pH of the samples without nHA fell slightly, 

indicating that they freed a smaller quantity of acid from the medium than the others. Taking into 

account that the results of GPC indicated that these were the most degraded samples, it is quite 

possible that they were undergoing a self-catalyzed degradation en bloc [24,25], in which case the 

acidic products would have been kept inside the scaffold and would not have been freed. At another 

extreme, we have the samples with 30% nHA, which underwent a greater reduction in their pH, 

because diffusion mechanisms, due to a higher water uptake, assisted the movement of oligomers 

into the PBS. The porous scaffolds of 50% nHA might have been expected to have shown a lower pH, 

due to the effect of the nanoparticles, but such a high quantity of these participles can provoke a 

tendency to coalescence, as previously observed, before the manufacture of the scaffolds. 

3.2.4. Thermal Analysis (DSC) 

The thermal behavior of the was studied by performing two scans from −50 to 200 °C with a 

heating speed of 10 °C/min and a cooling speed of 20 °C/min. If we compare the thermograms of both 
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PLGA 75/25 and PLGA 53/47 (Figure 6), we can confirm that they both behaved in a similar way; the 

glass transition temperature (Tg) (first run) of PLGA 53/47 was at 56 °C, while the Tg of PLGA 75/25 

took place at around 50 °C; however, the most notable observation was that the semicrystalline PLGA 

75/25 showed a small endothermic fusion peak at 170 °C, while PLGA 53/47 was amorphous. This 

peak was not shown in the subsequent thermograms performed with our scaffolds, undoubtedly due 

to the thermal treatment used during their manufacturing (a rapid tempering at −62 °C in addition to 

the degradation tests, performed under the Tg of the material, preventing any possible crystallization 

later on). The totality of the samples therefore presented an amorphous behavior throughout the 

degradation process. 

 

Figure 6. Thermograms of PLGA (53/47) and PLGA (75/25). 

The degree of crystallization must therefore significantly influence the degradation behavior. 

Some researchers have reported that the degradation behavior of amorphous PLGA scaffolds was 

more suitable for bone tissue engineering, because of more mineralized tissue formation within  

the matrix [8,13]. 

The Tgs shown in Tables 3 and 4 were determined from the DSC curve of the second run. In 

Table 3, we can see how the Tg temperature increased with the concentration of nHA and with the 

in vitro degradation for the samples fabricated with PLGA 53/47. On the contrary, no variations of 

Tg were observed in the samples of PLGA 75/25 (see Table 4). 

Table 3. Tgs of PLGA (53/47) and PLGA (53/47)/nHA composite scaffolds. 

Degradation Time (Weeks) 
Tg (°C) 

nHA 0% nHA 10% nHA 30% nHA 50% 

0 18.2 30.2 32.8 28.9 

1 44.2 33.7 34.4 30.7 

2 N/A 35.9 36.3 33.5 

3 N/A 38.4 39.4 38.8 

4 N/A 35.9 43.7 43.5 

6 N/A N/A 40.2 40.6 

8 N/A N/A 40.1 40.9 

Table 4. Tgs of PLGA (75/25) and PLGA (75/25)/nHA composite scaffolds. 

Degradation Time (Week) Tg (°C) 
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nHA 0% nHA 10% nHA 30% nHA 50% 

0 51.5 50.4 52.9 51.0 

1 52.2 52.8 51.9 51.8 

2 51.8 52.1 51.5 53.1 

3 52.6 52.2 51.9 52.5 

4 52.1 52.4 51.8 52.8 

6 52.1 52.1 51.9 52.9 

8 51.0 51.9 52.1 52.5 

The effect of the molecular weights of the copolymers on the Tg in the in vitro degradation 

process may be neglected, because the weights were sufficiently high. The Tg depends mainly on the 

copolymer composition. A higher GA content in the PLGA results in a higher Tg in the in vitro 

degradation, because PLGA 53/47 has a higher amorphous content; this behavior is contrary to what 

has been found by other researchers. [6,26–28]. Samples that have been fabricated with PLGA 75/25 

do not experience a variation in Tg because the degradation process is much slower than those of 

PLGA 53/47. 

3.2.5. FTIR 

The absorption spectra of the samples was measured with Fourier transform infrared (FTIR) 

spectroscopy and an attenuated total reflectance (ATR) accessory, so as not to have to modify the 

samples, because copolymer dissolution when preparing the films might provoke the presence of 

non-dissolved nHA.  

As we have already seen in other studies completed earlier [23,26–28], the presence of nHA will 

not affect the functional groups that we can observe through FTIR spectroscopy (see Figure 7a). 

The degraded scaffolds hardly presented appreciable variations. One of them was the 

appearance of a broad, but hardly intense band, after the second week of degradation, between 2800 

and 3600 cm−1, which could be attributed to the stretching vibration of the OH bands of the COOH 

and OH groups (Figure 7b). 

A very prominent absorption band appeared in the 1756-cm−1 region corresponding to the ester 

of the carbonyl group. This band is typical in the copolymers regardless of the type of PLGA.  
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Figure 7. (a) FTIR spectra of nHA, PLGA (75/25) and PLGA (75/25)/nHA 10%; (b) FTIR spectra of 

PLGA (75/25) and PLGA (75/25)/nHA 30% after various degradation times. 

3.2.6. SEM 

The morphology of the scaffolds was studied with scanning electron microscopy (SEM). The 

particles, included before the lyophilization process, are found uniformly distributed in the polymer 

matrix. Scaffold porosity exceeded 90%. In previous publications [7,24,28], the research group has 

reported that when using 1,4 dioxane and the resulting heat treatment in the manufacturing process, 

the pore structure and morphology were controlled by the solid-liquid phase separation process of 

the polymer solution. The pore size and the porosity are both attributed to a wall effect instead of a 

surface area. The morphology of the PLGA and PLGA/nHA composite scaffolds was similar for the 

samples prepared with the same procedure of fabrications, and they had a highly anisotropic tubular 

morphology with an internal ladder-like structure. 

PLGA 75/25 produced highly porous and interconnected scaffolds, as may be appreciated in 

Figure 8, the walls of which presented a high microporosity. PLGA 53/47 presented no porosity in 

the walls of the pores, and these were thicker than the pores of PLGA 75/25. The addition of nHA for 

both copolymers had no effect on porosity, but it did reduce the size and the morphology of the pores 

by interfering in the crystallization process of the dissolvent. As a result of irregular solvent crystal 

growth, the pores and the structure became irregular (more isotropic). Samples with a low content of 

nHA had a more porous appearance.  

  
(a) (b) 
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Figure 8. SEM observation of surface morphology of PLGA. (a) PLGA (53/47) before degradation;  

(b) PLGA (53/47) after in vitro degradation for three weeks; (c) PLGA (53/47)/nHA 50% before 

degradation; (d) PLGA (53/47)/nHA 50% after in vitro degradation for six weeks; (e) PLGA (75/25) 

before degradation; (f) PLGA (75/25) after in vitro degradation for eight weeks; (g) PLGA (75/25)/nHA 

50% before degradation; (h) PLGA (75/25)/nHA 50% after in vitro degradation for eight weeks. 

During the in vitro degradation in the porous scaffold of PLGA 75/25, microporosity was 

disappearing at the same time as the scaffold started to lose its form. Erosion was evident from the 

first week, and from the fourth week, the structure of the scaffold started to collapse. After the first 

week of degradation, a change in the surface morphology was appreciated in the porous scaffolds of 

PLGA 53/47 that went from having a smooth appearance to a more rugged one. This change is 

without a doubt due to the degradation, which started to free its products, exposing them together 

with particles of nHA on the walls of the scaffold. The formation of these precipitates on the surface 
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could favor the interaction between material and cell and therefore its biological response; moreover, 

the speed of degradation of the scaffolds was much quicker than those manufactured with PLGA 

75/25. The nanoparticles in both cases appeared to delay the process of in vitro degradation. 

In this way, we were able to confirm that the porous scaffolds of PLGA 75/25, because they 

contained 75% DL-lactide and only 25% glycolic acid, degraded much more slowly (a difference 

visible to the naked eye), while the samples of PLGA 75/25 were much less swollen and deformed 

than those of PLGA 53/47. The higher amount of lactide in the chain had a direct influence on the 

degradation. This tendency has previously been observed by other researchers [9,19]. 

4. Conclusions 

Studies of in vitro degradation in a PBS solution of composite scaffolds manufactured with 

PLGA 75/25, PLGA 53/47 and nHA have allowed us to confirm the influence of the copolymer ratio 

and the presence of nanohydroxyapatite as moderating elements in the degradation process. The 

inclusion of nHA modified the hydrophobic condition of the polymer and favored the entry of PBS, 

despite which, degradation was no quicker in the samples, but quite the contrary. The nanoparticles 

in our scaffolds acted as a physical barrier absorbing water, but complicating their diffusion towards 

the walls of the porous scaffolding. Moreover, PLGA 75/25, as it contains 75% DL-lactide and only 

25% glycolic acid, degraded much more slowly than the samples of PLGA 53/47, which became much 

more swollen and deformed. The PLGA with the lowest LA/GA molar ratio degraded faster due to 

its higher hydrophilicity. The PLGA samples and the corresponding composites with the inclusion 

of nHA are not cytotoxic. The introduction of hydroxyapatite is a bioactive reinforcement for bone 

tissue engineering applications. 
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