86 research outputs found

    State space modelling and data analysis exercises in LISA Pathfinder

    Full text link
    LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25 May 2012, Pari

    Micrometeoroid Events in LISA Pathfinder

    Get PDF
    The zodiacal dust complex, a population of dust and small particles that pervades the Solar System, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. Here we present a new set of data obtained using a novel technique: direct measurements of momentum transfer to a spacecraft from individual particle impacts. This technique is made possible by the extreme precision of the instruments flown on the LISA Pathfinder spacecraft, a technology demonstrator for a future space-based gravitational wave observatory that operated near the first Sun-Earth Lagrange point from early 2016 through Summer of 2017. Using a simple model of the impacts and knowledge of the control system, we show that it is possible to detect impacts and measure properties such as the transferred momentum (related to the particle's mass and velocity), direction of travel, and location of impact on the spacecraft. In this paper, we present the results of a systematic search for impacts during 4348 hours of Pathfinder data. We report a total of 54 candidates with momenta ranging from 0.2 ΌNs\,\mu\textrm{Ns} to 230 ΌNs\,\mu\textrm{Ns}. We furthermore make a comparison of these candidates with models of micrometeoroid populations in the inner solar system including those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type comets, and Asteroids. We find that our measured population is consistent with a population dominated by Jupiter-family comets with some evidence for a smaller contribution from Hailey-type comets. This is in agreement with consensus models of the zodiacal dust complex in the momentum range sampled by LISA Pathfinder.Comment: 22 pages, 14 figures, accepted in Ap

    Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≀ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA

    The LISA Pathfinder Mission

    No full text
    LISA Pathfinder (formerly known as SMART-2) is an European Space Agency mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for space-borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control, and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of spaceborne gravitational wave detectors by shrinking the million kilometre scale armlengths down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. In this paper I will give a brief overview of the mission, focusing on scientific and technical goals

    LISA Pathfinder as a Micrometeoroid Instrument

    Get PDF
    LISA Pathfinder is perhaps the most precise accelerometry instrument ever flown in space. The drag-free control system can sense and react to external disturbances of an extremely small magnitude. One class of such disturbances are the impacts of micrometeoroids or dust. A simple model of the LPF system suggests that individual impacts with transferred momentum exceeding a few tens of nanoNewton-meters are detectable. Furthermore, the ability of LPF to resolve both the linear and angular momentum transfer as vector quantities allows information such as the sky location and the impact location of the impactor to be reconstructed. This novel approach to micrometeoroid detection and characterization, as well as the location of LPF at L1, provide an opportunity to improve our understanding of the dust environment in the inner solar system. Here we present some preliminary findings from LPF, including four candidate impact events

    LISA Pathfinder: Understanding DWS noise performance for the LISA mission

    Get PDF
    ESA's L3 Laser Interferometer Space Antenna (LISA) mission contains a mechanism to compensate for out-of-plane angles between the received and emitted beams of the three satellites. Depending on the configuration of this Point-Ahead Angle Mechanism (PAAM) it is expected to contribute readout noise through Differential Wavefront Sensing (DWS). This was investigated with LISA Pathfinder (LPF) through a dedicated investigation. One of the two free-falling test masses was rotated via the on-board electrostatic actuators while the resulting angular noise in the differential interferometer between the two test masses was measured. For angles between −250 ÎŒrad to 250 ÎŒrad and corresponding contrast in the range of 59.4 % to 97.9 % an increased spectral density was found. The differential displacement noise remains almost unchanged for these misalignments.The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (FKZ 50OQ0501 and FKZ 50OQ1601)

    LISA Pathfinder closed-loop analysis: a model breakdown of the in-loop observables

    Get PDF
    This paper describes a methodology to analyze, in the frequency domain, the steady-state control performances of the LISA Pathfinder mission. In particular, it provides a technical framework to give a comprehensive understanding of the spectra of all the degrees of freedom by breaking them down into their various physical origins, hence bringing out the major contributions of the control residuals. A reconstruction of the measured in-loop output, extracted from a model of the closed-loop system, is shown as an instance to illustrate the potential of such a model breakdown of the data

    Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Get PDF
    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visibl

    Preliminary results on the suppression of sensing cross-talk in LISA Pathfinder

    Get PDF
    In the original paper describing the first measurements performed with LISA Pathfinder, a bulge in the acceleration noise was shown in the 200 mHz - 20 mHz frequency band. This bulge noise originated from cross-coupling of spacecraft motion into the longitudinal readout and it was shown that it is possible to subtract this cross-talk noise. We discuss here the model that was used for subtraction as well as an alternative approach to suppress the cross talk by realignment of the test masses. Such a realignment was performed after preliminary analysis of a dedicated cross-talk experiment, and we show the resulting noise suppression. Since then, further experiments have been performed to investigate the cross-coupling behaviour, however analysis of these experiments is still on-going

    LISA Pathfinder: OPD loop characterisation

    Get PDF
    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results
    • 

    corecore