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Abstract. LISA Pathfinder is perhaps the most precise accelerometry instrument ever flown in
space. The drag-free control system can sense and react to external disturbances of an extremely
small magnitude. One class of such disturbances are the impacts of micrometeoroids or dust. A
simple model of the LPF system suggests that individual impacts with transferred momentum
exceeding a few tens of nanoNewton-meters are detectable. Furthermore, the ability of LPF to
resolve both the linear and angular momentum transfer as vector quantities allows information
such as the sky location and the impact location of the impactor to be reconstructed. This novel
approach to micrometeoroid detection and characterization, as well as the location of LPF at
L1, provide an opportunity to improve our understanding of the dust environment in the inner
solar system. Here we present some preliminary findings from LPF, including four candidate
impact events.

1. Introduction
LISA Pathfinder (LPF) [1]is a technology demonstrator mission for future space-based
gravitational wave observatories. Led by the European Space Agency and with contributions
from a consortium of European member states and NASA, the mission was launched on
December 3rd, 2015 and began science operations on March 1st, 2016. The operational orbit
is a 0.8 Mkm × 0.5 Mkm Lissajous orbit around the first Earth-Sun Lagrange point (L1), a
gravitational balance point that lies approximately 1.5 Mkm in the sunward direction from Earth.
LPF has been operating in a variety of modes through baseline operations of its European
payload (March-June 2016), baseline operations of its NASA payload (July-November 2016),
and extended mission operations (December 2016 - present).

The primary purpose of these operations is to demonstrate drag-free control as a technique
for producing a low-disturbance inertial reference that could be used as the basis for a long-
baseline gravitational wave observatory. In LPF, the reference is a 4 cm cube of Au-Pt alloy
with a mass of approximately 1.92 kg. This ‘test mass’ is contained within an electrode housing
that is fixed to the spacecraft that can be used to both measure the position and attitude
of the test mass relative to the spacecraft as well as to apply forces and torques between the
test mass and spacecraft. A control system maintains gaps between the spacecraft and test
mass by monitoring the separation and applying force or torque commands to the test mass via
the electrode housing or to the spacecraft via a micropropulsion system. In typical drag-free
operations the spacecraft is commanded to follow the test mass in one axis (denoted as x) and
the test mass is forced to follow the spacecraft in other degrees-of-freedom (DoF). Additionally,
an interferometric metrology system is employed to measure the relative separation between the
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test mass and spacecraft along the x−axis with sub-picometer precision and rotations along the
y−axis and z−axis with nanoradian precision.

LPF carries a second test mass, located approximately 38 cm from the primary test mass in
the x direction. This test mass is used as a witness to characterize the residual disturbances of
the drag-free test mass. This differential acceleration measurement has the advantage that it
common-mode rejects external disturbances on the spacecraft, such as fluctuations in the solar
radiation pressure, solar wind, magnetic environment, and particle impacts. This strategy is
effective for characterizing drag-free test masses as references for gravitational-wave instruments
and was successfully employed to demonstrate residual acceleration noise significantly below the
LPF mission requirements and consistent with levels required for LISA-like gravitational wave
observatories [2].

In addition to this primary science goal, the external disturbances present in the single-
test mass signal represent an opportunity to characterize the space environment of LPF in a
unique and novel way - by measuring acceleration of the spacecraft. In a previous work [3] it was
shown that impacts of dust and micrometeoroids should be detectable in LPF if they transferred
momentum to the satellite of a few tens of µN · s. It was estimated that such events should
occur relatively frequently and that LPF should be able to measure properties including the
total transferred momentum, momentum direction, and location of impact on the spacecraft.
In this paper we present four impact candidates from the operations period of March 1, 2016
through June 28, 2016. This does not represent a complete catalog during this time period but
rather an example of typical events.

In section 2, we present one event and describe the process of reconstructing the external
force from the measured positions and attitudes of and the commanded forces and torques. In
section 3 we describe the 6-DoF model used to fit the impact candidates. In section 4 we present
the four impact candidates and the model fits. Section 5 summarizes our results and describes
ongoing and future work with this data set.

2. Event Reconstruction
The goal of the reconstruction process is to remove the effect of the LPF control loops and
estimate the dynamics of the spacecraft and test mass as if they were kinematicly free bodies.
The signals available for this are the measured position and attitude of the test mass (6 DoFs
from electrostatic measurements, 3 DoFs from interferometry), the commanded force and torque
to the spacecraft, and the commanded force and torque to the test mass. The reconstruction
is done in the acceleration domain to avoid integration constants that do not contribute to the
micrometeoroid signal. For example, in the x-axis, in which the spacecraft test mass separation
is controlled by forcing the spacecraft, the external spacecraft acceleration can be estimated
using the following equation:

aext(t) =
d2x(t)

dt2
− 1

M
C F (t− τ) − ω2x(t), (1)

where aext(t) is the external acceleration, x(t) is the measured position, F (t) is the commanded
force, M is the spacecraft mass, C is the gain in the micropropulsion system, τ is a delay in the
response of the micropropulsion system, and ω2 is a term describing the “stiffness”, a spring-
like coupling between the test mass and spacecraft that arises from electrostatic, magnetic, and
gravitational effects. Quantities such as C, τ , and ω2 are measured using signal injections as
part of the normal LPF measurement campaign.

Figure 1 shows an example of an impact candidate and the reconstructed external acceleration
in the x-axis. In the top panel of Figure 1a, the position of the test mass relative to the
spacecraft exhibits a sharp rise that is indicative of an impact. The bottom panel of Figure 1a
shows the corresponding force command, which includes the control system’s response to this
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disturbance. The control system does its job of rejecting the disturbance and settles into steady-
state after one or two oscillations. Figure 1b shows the reconstructed external acceleration, which
is an approximate delta function, as would be expected for an impact. A slight overshoot is
believed to be a reconstruction error associated with inaccuracies in the parameters used in (1)
or interpolation errors when applying sub-sample delays.
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Figure 1: x-axis dynamics for a candidate impact event. Left panel top shows relative motion of
test mass and spacecraft along x as measured by the interferometer. Left panel bottom shows
force commanded by drag-free system to the spacecraft along x. Right panel shows external
force along x as reconstructed from the measured position, commanded force, and knowledge of
the spacecraft mass and stiffness.

When extending this reconstruction process to all six DoFs, care must be taken to account
for couplings between the linear and angular DoFs as measured by the test masses, which are
offset from the spacecraft center of mass in both the +z direction and along the x-axis. To
address this coupling, the applied forces and torques on the spacecraft are first used to estimate
the linear and angular acceleration in the spacecraft body frame (a cartesian frame with the
origin at the spacecraft the center of mass). These accelerations are then used to compute the
contribution to the acceleration at the test masses using the known location of the housings
relative to the spacecraft body frame.

3. Models
To identify impact candidates and estimate the parameters of interest, a model of the system’s
response is needed. Since the event reconstruction described in Section 2 produces the equivalent
acceleration of the spacecraft as a free body, the impact model only needs to account for the
3D kinematics of the spacecraft. The impact model assumes that the impact timescale is short
relative to the sample cadence of the LPF data (typically 0.1 s) such that the impact can be
represented as a delta-function in acceleration. The geometric coupling of the impact momentum
to different DoFs is identical to that for the micropropulsion system and is computed in two
steps. First, the acceleration in the body frame is computed for both linear and angular DoFs:

~ax,B(t) = P M−1δ(t− τ)ê, (2)

~aθ(t) = P I−1δ(t− τ) (~r × ê) , (3)

where ~ax,B is the acceleration of the spacecraft body frame in the linear DoFs, ~aθ,B is the
acceleration of the spacecraft body frame in the angular DoFs, P is the total transferred
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momentum, τ is the impact time, ê is the unit-vector in the direction of the transferred
momentum, M is the mass of the spacecraft, I is the spacecraft moment of inertia, and ~r is
the location of the impact relative to the center of mass. The angular accelerations at the
housing frame are the same as described in (3) but the linear accelerations pick up an additional
term due to the offset of the test mass from the center of mass:

~ax,TM (t) = ~ax,B + (~rTM × ~aθ) , (4)

where ~ax,TM is the acceleration in the linear DoFs as measured in the test mass frame and ~rTM
is the location of the test mass in the body frame.

4. Results
The impact model in Section 3 was used in a Markov-Chain Monte-Carlo tool to both search
for and characterize potential impacts in stretches of LPF data [4, 5]. Sections of data with
no known signal injections were identified and passed through the event reconstruction pipeline
described in Section 2. The output of this pipeline was then divided into segments 1638.4 s in
length and passed to the MCMC tool, which used frequency-domain versions of the models in
(2) - (4) to fit for the parameters P , τ , ê (represented by two sky angles), and ~r. The impact
location was constrained to lie of the surface of the spacecraft and also to be consistent with the
measured sky angle (e.g. the impact location must have an unobstructed view of the origin of
the momentum vector). For segments with an identified candidate, the MCMC was allowed to
run for 105 iterations, including a burn-in period of 104 iterations.

While the results of a systematic search will be the subject of a future publication, here we
present four impact event candidates that occurred in the timeframe March 1, 2016 through
June 28, 2016. Table 1 summarizes the recovered parameters for these events. Figure 2 contains
posterior distribution functions for the transferred momenta, Figures 3a - 3d show sky maps of
the transferred momentum vector’s origin (direction opposite to the transferred momentum),
and Figure 4a - 4d show scatter plots of the MCMC samples of the recovered impact location
on the spacecraft colored by the natural log of the likelihood.

Table 1: Sample impact event candidates from the first portion of LTP operations. Values
represent the median of the posterior distribution and intervals represent the upper and lower
limits of the 90% confidence intervals. Colatitude represents the angle of the impact vector from
the +z direction. Azimuth represents the angle in the x− y plane from the +x axis.

Day GPS Time [s] Amplitude [µN · s] colatitiude [rad] azimuth [rad]

2016-04-09 1144229907.61+0.001
−0.0003 495+10

−9 1.576+0.003
−0.002 0.002+0.15

−0.12

2016-05-04 1146429821.79+0.04
−0.03 55+44

−23 1.60+.04−0.04 0.2+0.6
−0.8

2016-05-16 1147453725.596+0.005
−0.005 419+23

−15 1.568+0.005
−0.006 2.99+0.10

−0.24

2016-06-21 1150511110.27+0.01
−0.02 101+41

−31 1.59+.02−0.02 −0.77+0.31
−0.17

Not surprisingly, the recovered parameter accuracy is highly dependent on the amplitude of
the event, which is proportional to its signal-to-noise. For the two larger events, transferred
momentum is measured to within a few percent, sky angles to a few tenths of a radian (both
90% confidence intervals), and impact location restricted to a patch of a few tens of centimeters
in diameter. For the quieter events, the variation in recovered momenta rises to 50%, sky angles
are uncertain by as much as 0.5 rad, and the impact location is only weakly constrained and in
one case bimodal. In all cases, the impact is localized in time to better than 0.1 s, the sample
cadence of the measurement.
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Figure 2: Posterior distribution functions of reconstructed amplitudes for the four example
impact candidates.

(a) 2016-04-09 (b) 2016-05-04

(c) 2016-05-16 (d) 2016-06-21

Figure 3: Reconstructed sky position histograms for the four example impact candidates. Sky
maps are Mollweide projections with zero longitude along the +x axis of the SC and +90◦

latitude along the +z direction.
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(a) 2016-04-09 (b) 2016-05-04

(c) 2016-05-16 (d) 2016-06-21

Figure 4: Reconstructed impact locations for the four example impact candidates. Points
are MCMC chain locations after burn-in, color coded by log likelihood with warmer colors
representing higher likelihood.
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5. Discussion
The impact candidates presented in Section 4 demonstrate that detecting and characterizing
impact events with LPF is achievable in practice. However, additional steps are needed before
this work is complete.

First, the impact candidates need to be vetted and vetoed against any possible non-impact
transients that fool the search process. There are two general classes of these transients. The
first is a transient in the test mass system, either a force applied on the test mass such as an
outgassing event or a sensor glitch. Our approach to guarding against these types of transients
will be to utilize both the reference and non-reference test masses aboard LPF to simultaneously
search for impact events. Spurious transients of this type will either show up in only one test
mass or will be fit with inconsistent parameters between the two test masses.

The second kind of transient is an external force on the spacecraft that is not arising from
a micrometeoroid impact. The most likely culprit is one of the two micro-propulsion systems,
which may occasionally produce a thrust transient which would by definition be common mode
in the two test masses. These transients will be vetoed by comparing the recovered location
and sky angles of the impacts with the thruster location and directions as well as by examining
thruster diagnostic signals in the time period around an impact. Other non-impact disturbances
are not expected to have the short period impulse in acceleration that is characteristic of an
impact.

Another avenue of research is to compare the number and type of impacts detected with
models of the dust environment in the inner solar system. This will require a more complete
catalog of events as well as a model that can predict the flux of impacts near L1 as a function of
particle mass and velocity. If a sufficient number of events are detected, a detailed comparison of
such a model with data can be made, thus using a gravitational wave technology demonstrator
to inform our knowledge of the dust environment in the inner solar system.
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