4,440 research outputs found
Threshold feedback control for a collective flashing ratchet: threshold dependence
We study the threshold control protocol for a collective flashing ratchet. In
particular, we analyze the dependence of the current on the values of the
thresholds. We have found analytical expressions for the small threshold
dependence both for the few and for the many particle case. For few particles
the current is a decreasing function of the thresholds, thus, the maximum
current is reached for zero thresholds. In contrast, for many particles the
optimal thresholds have a nonzero finite value. We have numerically checked the
relation that allows to obtain the optimal thresholds for an infinite number of
particles from the optimal period of the periodic protocol. These optimal
thresholds for an infinite number of particles give good results for many
particles. In addition, they also give good results for few particles due to
the smooth dependence of the current up to these threshold values.Comment: LaTeX, 10 pages, 7 figures, improved version to appear in Phys. Rev.
Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in Ca
We describe the injection locking of two infrared (794 nm) laser diodes which
are each part of a frequency-doubled laser system. An acousto-optic modulator
(AOM) in the injection path gives an offset of 1.6 GHz between the lasers for
driving Raman transitions between states in the hyperfine split (by 3.2 GHz)
ground level of Ca. The offset can be disabled for use in
Ca. We measure the relative linewidth of the frequency-doubled beams
to be 42 mHz in an optical heterodyne measurement. The use of both injection
locking and frequency doubling combines spectral purity with high optical
power. Our scheme is applicable for providing Raman beams across other ion
species and neutral atoms where coherent optical manipulation is required.Comment: 3 pages, 3 figure
Experimental verification of reciprocity relations in quantum thermoelectric transport
Symmetry relations are manifestations of fundamental principles and
constitute cornerstones of modern physics. An example are the Onsager relations
between coefficients connecting thermodynamic fluxes and forces, central to
transport theory and experiments. Initially formulated for classical systems,
these reciprocity relations are also fulfilled in quantum conductors.
Surprisingly, novel relations have been predicted specifically for
thermoelectric transport. However, whereas these thermoelectric reciprocity
relations have to date not been verified, they have been predicted to be
sensitive to inelastic scattering, always present at finite temperature. The
question whether the relations exist in practice is important for
thermoelectricity: whereas their existence may simplify the theory of complex
thermoelectric materials, their absence has been shown to enable, in principle,
higher thermoelectric energy conversion efficiency for a given material
quality. Here we experimentally verify the thermoelectric reciprocity relations
in a four-terminal mesoscopic device where each terminal can be electrically
and thermally biased, individually. The linear response thermoelectric
coefficients are found to be symmetric under simultaneous reversal of magnetic
field and exchange of injection and emission contacts. Intriguingly, we also
observe the breakdown of the reciprocity relations as a function of increasing
thermal bias. Our measurements thus clearly establish the existence of the
thermoelectric reciprocity relations, as well as the possibility to control
their breakdown with the potential to enhance thermoelectric performanceComment: 7 pages, 5 figure
Increasing thermoelectric performance using coherent transport
We show that coherent electron transport through zero-dimensional systems can
be used to tailor the shape of the system's transmission function. This
quantum-engineering approach can be used to enhance the performance of quantum
dots or molecules in thermal-to-electric power conversion. Specifically, we
show that electron interference in a two-level system can substantially improve
the maximum thermoelectric power and the efficiency at maximum power by
suppressing parasitic charge flow near the Fermi energy, and by reducing
electronic heat conduction. We discuss possible realizations of this approach
in molecular junctions or quantum dots.Comment: 4+ pages, 4 figure
Mechanical coupling in flashing ratchets
We consider the transport of rigid objects with internal structure in a
flashing ratchet potential by investigating the overdamped behavior of a
rod-like chain of evenly spaced point particles. In 1D, analytical arguments
show that the velocity can reverse direction multiple times in response to
changing the size of the chain or the temperature of the heat bath. The
physical reason is that the effective potential experienced by the mechanically
coupled objects can have a different symmetry than that of individual objects.
All analytical predictions are confirmed by Brownian dynamics simulations.
These results may provide a route to simple, coarse-grained models of molecular
motor transport that incorporate an object's size and rotational degrees of
freedom into the mechanism of transport.Comment: 9 pages, 10 figure
Divergence of opinion and risk : an empirical analysis of the Ex Ante beliefs of institutional investors
Bibliography: p. [24-25
Effect of time delay on feedback control of a flashing ratchet
It was recently shown that the use of feedback control can improve the
performance of a flashing ratchet. We investigate the effect of a time delay in
the implementation of feedback control in a closed-loop collective flashing
ratchet, using Langevin dynamics simulations. Surprisingly, for a large
ensemble, a well-chosen delay time improves the ratchet performance by allowing
the system to synchronize into a quasi-periodic stable mode of oscillation that
reproduces the optimal average velocity for a periodically flashing ratchet.
For a small ensemble, on the other hand, finite delay times significantly
reduce the benefit of feedback control for the time-averaged velocity, because
the relevance of information decays on a time scale set by the diffusion time
of the particles. Based on these results, we establish that experimental use of
feedback control is realistic.Comment: 6 pages, 6 figures, to appear in Europhysics Letter
Realization of a feedback controlled flashing ratchet
A flashing ratchet transports diffusive particles using a time-dependent,
asymmetric potential. Particle speed is predicted to increase when a feedback
algorithm based on particle positions is used. We have experimentally realized
such a feedback ratchet using an optical line trap, and observed that use of
feedback increases velocity by up to an order of magnitude. We compare two
different feedback algorithms for small particle numbers, and find good
agreement with simulations. We also find that existing algorithms can be
improved to be more tolerant to feedback delay times
Variation of cloud horizontal sizes and cloud fraction over Europe 1985–2018 in high-resolution satellite data
Aerosol-cloud interactions are a major uncertainty in estimating the anthropogenic
climate change. Adjustments of cloud properties to an aerosol perturbation
concern among others the cloud fraction, and have been emphasised as particularly
complex.
Cloud adjustments can generate important responses on the distribution of cloud
horizontal sizes. We derive the cloud-size distribution as observational constraint for the
cloud-fraction response from high-resolution Landsat satellite data. The goal is to carry
out long-term trends in cloud sizes and cloud fraction over Europe during 1985–2018 to
investigate the impact of major aerosol reductions during that time. Landsat data with
a high spatial resolution of 30m was preprocessed via the web-based platform Google
Earth Engine to evade the obstacle of high computational effort and time to handle the
comprehensive data archive.
The observed multidecadal trends indicate a widespread increase in cloud fraction
during 1985–2018. This corresponds to a decrease in the number of small clouds of
several 10–100m cloud length, whereas larger clouds (1 km and more), which contribute more to the cloud fraction, became more numerous. We confirm this by showing a largescale decrease of the power-law exponent describing the relative abundance of small and large clouds in the cloud-size distribution. Even though we can interpret the observed changes in cloud properties as significant trends, we do not explicitly identify a clear aerosol signal. Untangling the pure aerosol effect from other confounding factors (e.g., the local meteorology) is therefore left as an outlook for subsequent studies.Aerosol-Wolken-Wechselwirkungen stellen eine große Unsicherheit
in der Quantifizierung des anthropogenen Klimawandels dar. Die sekundären Anpassungen von Wolken an eine Veränderung atmosphärischer Aerosolkonzentrationen betreffen beispielsweise denWolken-Bedeckungsgrad und sind besonders komplex. Wolkenanpassungen können sich in der Veränderung der Wolkengrößen-Verteilung widerspiegeln. Wir präsentieren eine Methode, um mittels Beobachtungen der Wolkengrößen- Verteilung zeitliche Veränderungen in Aerosol-Wolken-Wechselwirkungen nachzuweisen.
Wolkengrößen-Verteilung und Wolkenbedeckungsgrad wurden mittels hochauflösender Satellitendaten der Landsat-Serie berechnet. Das Ziel ist es, langjährige Trends im Wolkenbedeckungsgrad über Europa im Zeitraum 1985–2018 herzuleiten und ggf. den Einfluss stark rückläufiger Aerosolkonzentrationen während dieser Zeit zu identifizieren. Landsat-Daten haben eine räumliche Auflösung von bis zu 30 Metern. Um die damit verbundenen großen Datenmengen prozessieren zu können, nutzen wir dieWeb-basierte Plattform Google Earth Engine. Unsere langjährigen Trends zeigen eine großskaligen Zunahme im Wolkenbedeckungsgrad
zwischen 1985 und 2018. Dies ist zurückzuführen auf einen relativen Rückgang
in der Anzahl kleinerer Wolken (einige 10 bis 100 Meter Länge), während größere
Wolken (mehrere Kilometer),welche mehr zum Bedeckungsgrad beitragen, häufiger wurden. Dies zeigt sich im negativen Trend des Power-Law-Exponenten der Wolkengrößen- Verteilung, welcher die relative Anzahl kleiner und großer Wolken beschreibt. Auch wenn sich diese Beobachtungen als signifikante Trends herausstellen, identifizieren wir darin kein klares Aerosol-Signal. Die Isolierung des puren Aerosoleffekts von anderen beeinflussenden Faktoren, wie der lokalen Meteorologie, bietet einen Ansatzpunkt für aufbauende Studien
- …