1,286 research outputs found

    A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD)

    Full text link
    We presented the first particle based, Lagrangian code that can follow the collisional/accretional/dynamical evolution of a large number of km-sized planetesimals through the entire growth process to become planets. We refer to it as the 'Lagrangian Integrator for Planetary Accretion and Dynamics' or LIPAD. LIPAD is built on top of SyMBA, which is a symplectic NN-body integrator. In order to handle the very large number of planetesimals required by planet formation simulations, we introduce the concept of a `tracer' particle. Each tracer is intended to represent a large number of disk particles on roughly the same orbit and size as one another, and is characterized by three numbers: the physical radius, the bulk density, and the total mass of the disk particles represented by the tracer. We developed statistical algorithms that follow the dynamical and collisional evolution of the tracers due to the presence of one another. The tracers mainly dynamically interact with the larger objects (`planetary embryos') in the normal N-body way. LIPAD's greatest strength is that it can accurately model the wholesale redistribution of planetesimals due to gravitational interaction with the embryos, which has recently been shown to significantly affect the growth rate of planetary embryos . We verify the code via a comprehensive set of tests which compare our results with those of Eulerian and/or direct N-body codes.Comment: Accepted to the Astronomical Journal. See http://www.boulder.swri.edu/~hal/LIPAD.html for more detail including animation

    Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    Full text link
    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments we have included: 1) aerodynamic gas drag, 2) collisional damping between planetesimals, 3) enhanced embryo cross-sections due to their atmospheres, 4) planetesimal fragmentation, and 5) planetesimal driven migration. We find that the gravitational interaction between the embryos and the planetesimals lead to the wholesale redistribution of material - regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near that embryos is cleared of planetesimals before much growth can occur. The remaining 10%, however, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ~100,000 years, the outer embryo can migrate ~6 AU and grow to roughly 30 Earth-masses. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth.Comment: Accepted to AJ, 62 pages 11 figure

    Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12

    Full text link
    Explaining the origin of the orbit of 2000 CR105 (a ~ 230AU, q ~ 45AU) is a major test for our understanding of the primordial evolution of the outer Solar System. Gladman et al. (2001) showed that this objects could not have been a normal member of the scattered disk that had its perihelion distance increased by chaotic diffusion. In this paper we explore four seemingly promising mechanisms for explaining the origin of the orbit of this peculiar object: (i) the passage of Neptune through a high-eccentricity phase, (ii) the past existence of massive planetary embryos in the Kuiper belt or the scattered disk, (iii) the presence of a massive trans-Neptunian disk at early epochs which exerted tides on scattered disk objects, and (iv) encounters with other stars. Of all these mechanisms, the only one giving satisfactory results is the passage of a star. Indeed, our simulations show that the passage of a solar mass star at about 800 AU only perturbs objects with semi-major axes larger than roughly 200 AU to large perihelion distances. This is in good agreement with the fact that 2000 CR105 has a semi-major axis of 230AU and no other bodies with similar perihelion distances but smaller semi-major axes have yet been discovered. The discovery of 2003 VB12, (a=450AU, q=75AU) announced a few days before the submission of this paper, strengthen our conclusions.Comment: AJ submitted. 27 pages, 6 figure

    Henri Temianka correspondence, Gurs

    Get PDF
    https://digitalcommons.chapman.edu/beach_gurs_et_al_correspondence/1004/thumbnail.jp

    Which Radial Velocity Exoplanets Have Undetected Outer Companions?

    Full text link
    (Abridged) The observed radial velocity (RV) eccentricity distribution for extrasolar planets in single-planet systems shows that a significant fraction of planets are eccentric (e>0.1e > 0.1). Here we investigate the effects on an RV planet's eccentricity produced by undetected outer companions. We have carried out Monte Carlo simulations of mock RV data to understand this effect and predict its impact on the observed distribution. We first quantify the statistical effect of undetected outer companions and show that this alone cannot explain the observed distribution. We then modify the simulations to consist of two populations, one of zero-eccentricity planets in double-planet systems and the other of single planets drawn from an eccentric distribution. Our simulations show that a good fit to the observed distribution is obtained with 45% zero-eccentricity double-planets and 55% single eccentric planets. Matching the observed distribution allows us to determine the probability that a known RV planet's orbital eccentricity has been biased by an undetected wide-separation companion. Our simulations show that moderately-eccentric planets, with 0.1<e<0.30.1 < e < 0.3 and 0.1<e<0.20.1 < e < 0.2, have a 13\sim 13% and 19\sim 19% probability, respectively, of having an undetected outer companion. We encourage both high-contrast direct imaging and RV follow-up surveys of known RV planets with moderate eccentricities to test our predictions and look for previously undetected outer companions.Comment: 23 pages (12 text, 2 tables, 9 figures). Accepted to the Astrophysical Journal 30 June 200

    Migration of Jupiter-family comets and resonant asteroids to near-Earth space

    Full text link
    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 yr step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but sometimes give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit, and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits, and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. Some Jupiter-family comets can reach inclinations i>90 deg. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region.Comment: Proc. of the international conference "New trends in astrodynamics and applications" (20-22 January 2003, University of Maryland, College Park

    A comparison of head and manual control for a position-control pursuit tracking task

    Get PDF
    Head control was compared with manual control in a pursuit tracking task involving proportional controlled-element dynamics. An integrated control/display system was used to explore tracking effectiveness in horizontal and vertical axes tracked singly and concurrently. Compared with manual tracking, head tracking resulted in a 50 percent greater rms error score, lower pilot gain, greater high-frequency phase lag and greater low-frequency remnant. These differences were statistically significant, but differences between horizontal- and vertical-axis tracking and between 1- and 2-axis tracking were generally small and not highly significant. Manual tracking results were matched with the optimal control model using pilot-related parameters typical of those found in previous manual control studies. Head tracking performance was predicted with good accuracy using the manual tracking model plus a model for head/neck response dynamics obtained from the literature
    corecore