1,696 research outputs found

    Early EEG correlates of word frequency and contextual predictability in reading

    Get PDF
    Previous research into written language comprehension has been equivocal as to whether word frequency and contextual predictability effects share an early time course of processing. Target word frequency (low, high) and its predictability from prior context (low, high) were manipulated across two-sentence passages. Context sentences were presented in full, followed by word-by-word presentation (300 ms SOA) of target sentences. ERPs were analysed across left-to-right and anterior-to-posterior regions of interest within intervals from 50 to 550 ms post-stimulus. The onset of significant predictability effects (50–80 ms) preceded that of frequency (P1, 80–120 ms), while both main effects were generally sustained through the N400 (350–550 ms). Critically, the frequency-predictability interaction became significant in the P1 and was sustained through the N400, although the specific configuration of effects differed across components. The pattern of findings supports an early, chronometric locus of contextual predictability in recognising words during reading

    Petrological Constraints on the Recycling of Mafic Crystal Mushes and Intrusion of Braided Sills in the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    Cumulate and crystal mush disruption and reactivation are difficult to recognize in coarse-grained, shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. This study presents the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its subvertical feeder zone. We summarize a number of observations that occur in structurally different, shallow, plutonic rocks, as follows. (1) The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine-grained monzodiorite sills. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ∼300 to ∼400 MPa. The corresponding rims and monzodiorite matrix crystallized at 950°C) than estimated from the composition of the granite minimum. We show that hornblende-plagioclase thermobarometry is a useful monitor for the determination of the segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and coolin

    A Detailed Geochemical Study of a Shallow Arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    The shallow crustal Torres del Paine Intrusive Complex in southern Patagonia offers an opportunity to understand the chemical evolution and timing of crystallization processes in shallow plutonic rocks. It is characterized by hornblende-gabbros, gabbronorites, monzodiorites and granitic plutonic rocks. The exceptional exposure of the intrusion permits the identification of two structurally and petrographically different zones. Layered gabbronorite, olivine-bearing pyroxene-hornblende gabbronorite and monzodiorite forming vertical sheets and stocks in the west are referred to here as the feeder zone. These mafic rocks are in vertical contact with younger granitic rocks on their eastern border. The eastern part is a laccolith complex. It is characterized by three major units (I, II, III) of granitic rocks of over 1000 m vertical thickness; these are underlain in places by a sequence of hornblende-gabbro sills intermingled with evolved monzodiorite granite. Chilled, crenulated margins as well as flame structures between gabbroic rocks and monzodiorites suggest that the mafic sill complex remained partially molten during most of its construction. Bulk-rock major and trace element data indicate that the Paine mafic rocks follow a high-K calc-alkaline to shoshonitic differentiation trend. The parental magmas were basaltic trachyandesite liquids, with variable H2O and alkali contents. The majority of the feeder zone gabbronorites have high Al2O3 contents and positive Eu and Sr anomalies, consistent with accumulation of plagioclase and efficient extraction of intercumulus melt. The mafic sill complex largely lacks these cumulate signatures. Comparisons of the intercumulus groundmass in the hornblende-gabbros with intra-sill dioritic stocks and pods reveal similar rare earth element patterns and trace element ratios indicating incomplete extraction of evolved interstitial liquids. The Sr, Nd and Pb isotopic compositions of the mafic and granitic rocks exhibit ranges of 87Sr/86Sr of 0·704-0·708, εNd +3·8 to −1·2, 206Pb/204Pb 18·61-18·77, 207Pb/204Pb 15·67-15·67 and 208Pb/204Pb 38·56-38·77. Crystal fractionation and assimilation-fractional crystallization modelling, combined with high-precision U-Pb dating of zircons, indicates that the western feeder zone gabbronorites are linked to the uppermost Paine granite (granite I), whereas the mafic sill complex is younger and not directly related to the voluminous granite units II and III. These results are interpreted to indicate that crystal-liquid separation is facilitated in subvertical, dynamic feeder systems whereas subhorizontal sill complexes are inefficient in separating large volumes of mafic cumulates and complementary felsic rock

    Silicon-organic hybrid electro-optical devices

    Get PDF
    Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices

    DAC-Less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators

    Get PDF
    We demonstrate generation and transmission of optical signals by directly interfacing highly efficient silicon-organic hybrid (SOH) modulators to binary output ports of a field-programmable gate array. Using an SOH Mach-Zehnder modulator (MZM) and an SOH IQ modulator we generate ON-OFF- keying and binary phase-shift keying signals as well as quadrature phase-shift keying and 16-state quadrature amplitude modulation (16QAM) formats. Peak-to-peak voltages amount to only 0.27 V-pp for driving the MZM and 0.41 V-pp for the IQ modulator. Neither digital-to-analog converters nor drive amplifiers are required, and the RF energy consumption in the modulator amounts to record-low 18 fJ/bit for 16QAM signaling

    Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays

    Get PDF
    We demonstrate the first chip-to-chip interconnect utilizing a densely integrated plasmonic Mach-Zehnder modulator array operating at 3 x 10 Gbit/s. A multicore fiber provides a compact optical interface, while the receiver consists of germanium photodetectors

    40 Gbit/s silicon-organic hybrid (SOH) phase modulator

    Get PDF
    A 40 Gbit/s electro-optic modulator is demonstrated. The modulator is based on a slotted silicon waveguide filled with an organic material. The silicon organic hybrid (SOH) approach allows combining highly nonlinear electro-optic organic materials with CMOS-compatible silicon photonics technology

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials

    Direct digital control of an efficient silicon+lequid crystal phase shifter

    Get PDF
    We demonstrate a phase shifter based on a silicon slot waveguide infiltrated with liquid crystal. We achieve a phase shift of 73 pi for a 5V drive voltage, with a voltage-length product of 0.022V.mm around 1V. We can drive the phase shifter directly with a 1V, duobinary pulse-width-modulated signal, allowing direct digital CMOS control of an analog optical phase shifter
    corecore