2,447 research outputs found

    On the transport of charged particles in turbulent fields: comparison of an exact solution with the quasilinear approximation

    Get PDF
    The problem of charged-particle transport in a magnetic field which is solely a function of time is solved. The solution is obtained exactly, to all orders in the field, in the limit of large wavelengths normal to the magnetic field. It is shown that the usual quasilinear, Fokker-Planck approximation is equal to the exact solution in the limit of times large compared with the correlation time of the fluctuating field. This is just the regime where the approximation has been used in the past, and this special case thus gives some support to the standard approximation techniques

    A new kind of McKay correspondence from non-Abelian gauge theories

    Full text link
    The boundary chiral ring of a 2d gauged linear sigma model on a K\"ahler manifold XX classifies the topological D-brane sectors and the massless open strings between them. While it is determined at small volume by simple group theory, its continuation to generic volume provides highly non-trivial information about the DD-branes on XX, related to the derived category Dâ™­(X)D^\flat(X). We use this correspondence to elaborate on an extended notion of McKay correspondence that captures more general than orbifold singularities. As an illustration, we work out this new notion of McKay correspondence for a class of non-compact Calabi-Yau singularities related to Grassmannians.Comment: 29 pages, harvmac(b), 2 fig

    High-energy pulses and phase-resolved spectra by inverse Compton emission in the pulsar striped wind - Application to Geminga

    Full text link
    (abridged) Although discovered 40 years ago, the emission mechanism responsible for the observed pulsar radiation remains unclear. However, the high-energy pulsed emission is usually explained in the framework of either the polar cap or the outer gap model. The purpose of this work is to study the pulsed component, that is the light-curves as well as the spectra of the high-energy emission, above 10 MeV, emanating from the striped wind model. Gamma rays are produced by scattering off the soft cosmic microwave background photons on the ultrarelativistic leptons flowing in the current sheets. We compute the time-dependent inverse Compton emissivity of the wind, in the Thomson regime, by performing three-dimensional numerical integration in space over the whole striped wind. The phase-dependent spectral variability is then calculated as well as the change in pulse shape when going from the lowest to the highest energies. Several light curves and spectra of inverse Compton radiation with phase resolved dependence are presented. We apply our model to the well-known gamma-ray pulsar Geminga. We are able to fit the EGRET spectra between 10 MeV and 10 GeV as well as the light curve above 100 MeV with good accuracy.Comment: Accepted by A&

    Picard-Fuchs Equations and Special Geometry

    Full text link
    We investigate the system of holomorphic differential identities implied by special K\"ahlerian geometry of four-dimensional N=2 supergravity. For superstring compactifications on \cy threefolds these identities are equivalent to the Picard-Fuchs equations of algebraic geometry that are obeyed by the periods of the holomorphic three-form. For one variable they reduce to linear fourth-order equations which are characterized by classical WW-generators; we find that the instanton corrections to the Yukawa couplings are directly related to the non-vanishing of w4w_4. We also show that the symplectic structure of special geometry can be related to the fact that the Yukawa couplings can be written as triple derivatives of some holomorphic function FF. Moreover, we give the precise relationship of the Yukawa couplings of special geometry with three-point functions in topological field theory.Comment: 43 page

    Boundary Rings and N=2 Coset Models

    Full text link
    We investigate boundary states of N=2 coset models based on Grassmannians Gr(n,n+k), and find that the underlying intersection geometry is given by the fusion ring of U(n). This is isomorphic to the quantum cohomology ring of Gr(n,n+k+1), and thus can be encoded in a ``boundary'' superpotential whose critical points correspond to the boundary states. In this way the intersection properties can be represented in terms of a soliton graph that forms a generalized, Z_{n+k+1} symmetric McKay quiver. We investigate the spectrum of bound states and find that the rational boundary CFT produces only a small subset of the possible quiver representations.Comment: 40p, 5 figs, refs added, typos and minor errors correcte

    On Heterotic/Type I Duality in d=8

    Get PDF
    We discuss heterotic corrections to quartic internal U(1) gauge couplings and check duality by calculating one-loop open string diagrams and identifying the D-instanton sum in the dual type I picture. We also compute SO(8)^4 threshold corrections and finally R^2 corrections in type I theory.Comment: 9 pages, Latex, To appear in the proceedings of "Quantum Aspects of Gauge Theories, Supersymmetries and Unification", Corfu, September 199

    Diffusive electron acceleration at SNR shock fronts and the observed SNR radio spectral indices

    Get PDF
    The radio synchrotron emission from relativistic electrons in shell supernova remnants (SNRs) provides a unique opportunity to probe the energy distribution of energetic electrons at their acceleration site (SNR shock fronts). This information provides insight into the acceleration mechanism(s). The implications of these observations for the diffusive (first-order Fermi) acceleration of electrons at the SNR shock fronts are discussed

    The Cold War...and After

    Get PDF

    Calculations for Mirror Symmetry with D-branes

    Full text link
    We study normal functions capturing D-brane superpotentials on several one- and two-parameter Calabi-Yau hypersurfaces and complete intersections in weighted projective space. We calculate in the B-model and interpret the results using mirror symmetry in the large volume regime, albeit without identifying the precise A-model geometry in all cases. We identify new classes of extensions of Picard-Fuchs equations, as well as a novel type of topology changing phase transition involving quantum D-branes. A 4-d domain wall which is obtained in one region of closed string moduli space from wrapping a four-chain interpolating between two Lagrangian submanifolds is, for other values of the parameters, represented by a disk ending on a single Lagrangian.Comment: 42 page
    • …
    corecore