54 research outputs found

    Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus (SARS-CoV-2)

    Get PDF
    The Covid-19 pandemic has caused untold disruption and enhanced mortality rates around the world. Understanding the mechanisms for transmission of SARS-CoV-2 is key to preventing further spread but there is confusion over the meaning of “airborne” whenever transmission is discussed. Scientific ambivalence originates from evidence published many years ago, which has generated mythological beliefs that obscure current thinking. This article gathers together and explores some of the most commonly held dogmas on airborne transmission in order to stimulate revision of the science in the light of current evidence. Six ‘myths’ are presented, explained, and ultimately refuted on the basis of recently published papers and expert opinion from previous work related to similar viruses. There is little doubt that SARS-CoV-2 is transmitted via a range of airborne particle sizes subject to all the usual ventilation parameters and human behaviour. Experts from specialties encompassing aerosol studies, ventilation, engineering, physics, virology and clinical medicine have joined together to present this review, in order to consolidate the evidence for airborne transmission mechanisms and offer justification for modern strategies for prevention and control of Covid-19 in healthcare and community

    Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks

    Get PDF
    Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the key factors that control airborne disease transmission indoors: virus-containing aerosol generation rate, breathing flow rate, masking and its quality, ventilation and aerosol-removal rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend that is consistent with airborne infection and enable recommendations to minimize transmission risk. Transmission in typical prepandemic indoor spaces is highly sensitive to mitigation efforts. Previous outbreaks of measles, influenza, and tuberculosis were also assessed. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at higher risk parameter values. Because both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include information on masking, ventilation and aerosol-removal rates, number of occupants, and duration of exposure, to investigate airborne transmission

    COVID-19 and Airborne Transmission: Science Rejected, Lives Lost. Can Society Do Better?

    Get PDF
    This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions

    COVID-19 and Airborne Transmission: Science Rejected, Lives Lost. Can Society Do Better?

    Get PDF
    This is an account that should be heard of an important struggle: the struggle of a large group of experts who came together at the beginning of the COVID-19 pandemic to warn the world about the risk of airborne transmission and the consequences of ignoring it. We alerted the World Health Organization about the potential significance of the airborne transmission of SARS-CoV-2 and the urgent need to control it, but our concerns were dismissed. Here we describe how this happened and the consequences. We hope that by reporting this story we can raise awareness of the importance of interdisciplinary collaboration and the need to be open to new evidence, and to prevent it from happening again. Acknowledgement of an issue, and the emergence of new evidence related to it, is the first necessary step towards finding effective mitigation solutions

    Parametric study for the long term energetic performance of geothermal energy piles

    No full text
    Geothermal energy constitutes an important renewable resource that will become increasingly prominent in future constructions. A common method of extraction and usage consists of installing, inside the foundation piles of buildings, U-shaped heat exchangers called "energy piles". In this paper such installations are addressed by means of a full parametric study, performed for a hall-type commercial building in a cold climate. By computing the transient heat transfer between energy piles and ground for a period of 20 years, guidelines for a preliminary sizing of the geothermal system as a whole are provided. These are valid for this specific building and climate, for a clay-type soil and without assuming thermal storage. A highly nonlinear behaviour of the expected yield in relation to pile separation and evaporator extraction power is observed. Furthermore, 15m-long piles are found to be more efficient than those with double length, a smaller extraction power seems to be more favourable and differences in thepile diameter have little impact for heat transfer. A geothermal system sizing guide, which is useful for a preliminary quantitative test prior to any installation, is introduced. Even though our specific results are valid only for a commercial hall-type building in Finland, our procedure is qualitatively general and can be utilized for any given building type and climate zone.Peer reviewe
    corecore