201 research outputs found

    Friedman-like cosmological models with non-zero pressure.

    Get PDF

    P-Star-Model Based Analysis of Inflation Dynamic in the Czech Republic.

    Get PDF
    The paper presents a version of the P* model of inflation dynamics for a small open economy and applies it to the Czech economy time series from the period of 1991-1999. The paper is organized as follows. Section 2 presents a brief discussion of the monetary policy indicators issue. Section 3 describes the logics of the P* model. Section 4 explains the extension of the basic model to the case of a small open economy. Section 5 applies the model to the Czech economy data and presents the estimates of the Czech inflation dynamics determination.INFLATION ; TIME SERIES ; MONETARY POLICY

    A Self-Guided Educational Program Based on Informatics Competency Self-Assessment

    Get PDF
    The informatics competency gap for nurses has existed since the first use of technology in healthcare. Although numerous informatics competencies for nurses have been identified over the past 20 years, there is a lack of standardized educational content to help address the informatics competency gap. In a digital healthcare environment, the ability for nurses to understand and use informatics competencies is essential and the lack of informatics competency has a far-reaching impact. Based on the identified gaps, an informatics competency self-assessment tool with associated microeducation was developed to provide a standardized learning approach that would be supported by stakeholders in healthcare organizations. The electronic self-assessment tool embodies Knowles principles of adult learning. A review of current literature was performed using scholarly databases and peer-reviewed sources and a current nursing informatics competency self-assessment tool was identified to be used as the foundation of this project. Self-guided microeducation modules were developed, and a Delphi method was used to validate the content through the feedback of five subject-matter experts with informatics expertise. When completed, the electronic microeducation was linked to each question in the competency self-assessment tool. A final Delphi review of the educational project demonstrated that an informatics competency self-assessment tool with associated microeducation could provide a standardized learning approach that would be supported by stakeholders in healthcare organizations. This project impacts social change by providing a mechanism for to improve nursing informatics competencies that will reduce technology-related nursing burnout and improve patient outcomes

    sCO2 Compression

    Get PDF
    TutorialSupercritical Carbon Dioxide (sCO2) power cycles are a transformational technology for the energy industry, providing higher thermal efficiency compared to traditional heat-source energy conversion including conventional fossil and alternative energy sources. The novel cycle significantly reduces capital costs due to smaller equipment footprints and design modularity. In addition, it allows for rapid cyclic load and source following to balance solar and wind energy power swings. Compressing CO2 is not novel, but mostly at lower vapor pressures, and at higher pressure and lower temperatures as a liquid. Compression near the dome (near critical pressure and temperature) is a new interest that has many advantages and challenges. The key advantage is the low head requirement when compressing near the CO2 dome (95oF [35oC] and 1,233 psi [8.5 MPa]). To pressurize from 1,233 psi (target inlet pressure of power cycles) to 3,916 psi (27.0 MPa), only a single high-speed compressor stage is required. This low head requirement means less power is required to compress and leads to an increase in thermal efficiency of these cycles. High-efficiency compression technology can reduce the power of Enhanced Oil Recovery (EOR) and Carbon Capture and Sequestration (CCS) applications. This type of compression also brings many challenges. A compressor for this application pushes many current technology limits, including but not limited to: pressure rise per stage, bearing technologies, sealing technologies, damping, rotordynamics, compact machinery packaging, and high-density, high-speed compression. In addition, when compressing near the CO2 dome, there are large swings in density for slight changes in temperature. This is a unique challenge not observed when CO2 is pumped as a liquid or compressed as a vapor. Due to these large changes in density, range extension is required to maintain high compression efficiency and controlled mass flow over a range of operating temperatures. Recent testing finished on a state-of-the-art sCO2 compressor operating near the dome that was designed, manufactured, and tested by Southwest Research Institute (SwRI) and General Electric Global Research (GE-GRC). This tutorial will highlight many of the unique aspects of the design, especially those challenges and decisions that were focused on high pressure ratio compression stages, high-density and high-speed flow, special rotordynamic considerations, and the overall challenges of compact high-pressure turbomachinery. It will then cover how the design and analysis translated to testing with a real gas that experiences rapid changes in fluid properties for minimal fluctuations in temperature. In addition, due to its need for compact, high-power, and high-speed machinery, the development of sCO2 machinery aids in the development of many advanced components and hardware that can also be used in other applications. This includes high-pressure and high-temperature end seals, zero- to low-emission seals, hermetically sealed systems with gas or magnetic bearings, high-pressure single stage compressors, range extension technologies like variable Inlet Guide Vanes (IGVs), and high-density and high-critical speed ratio operation

    Data report: composite depth scale and splice revision for IODP Site U1488 (Expedition 363 Western Pacific Warm Pool) using XRF core scanning data and core images

    Get PDF
    The Western Pacific Warm Pool (WPWP) is a major source of heat and moisture to the atmosphere. Small perturbations in WPWP sea-surface temperatures greatly influence local Hadley and Walker cells, thereby affecting global atmospheric circulation patterns. International Ocean Discovery Program (IODP) Expedition 363 sought to document the regional expression and driving mechanisms of WPWP climate variability during the Neogene on millennial, orbital, and geological timescales. Located in the heart of the WPWP, IODP Site U1488 (02°02.59ʹN, 141°45.29ʹE) was drilled in 2604 m water depth on the southern part of the Eauripik Rise in the Caroline Basin. At Site U1488, a continuous shipboard composite stratigraphic section from 0 to ~331 m core composite depth below seafloor (CCSF) was compiled using high-resolution shipboard physical property data from three holes. This section comprises upper Miocene to recent foraminifer-rich nannofossil ooze and foraminifer-nannofossil ooze, making Site U1488 ideally suited to reconstruct the paleoceanographic history of the central WPWP region. However, the high carbonate content (>90% below ~180 m CCSF) of Site U1488 sediments means that the physical property data sets commonly used for splice construction (gamma ray attenuation bulk density, magnetic susceptibility, and natural gamma radiation) were too low amplitude to provide robust constraints on splice tie points below 120 m CCSF. As a result, P-wave data, which are relatively untested as a correlation tool, became critical for correlating between holes. Here, we verify and extend the Site U1488 shipboard composite splice using high-resolution (2 cm) X-ray fluorescence Ba/Sr core scanning data combined with composite linescan images. Overall, using these data at Site U1488 resulted in revised core offsets that differ by up to 0.84 m relative to the shipboard core offsets and a composite depth scale down to 329.33 m revised CCSF. The revised splice will allow optimization of postexpedition research and ensure that high-resolution studies of Site U1488 are conducted on a continuous stratigraphic section

    Re-discovery of a "living fossil" coccolithophore from the coastal waters of Japan and Croatia

    Get PDF
    The extant coccolithophore Tergestiella adriatica Kamptner, which had not been reported since its original description in 1940, was recently re-discovered in coastal-nearshore waters at Tomari, Tottori (Japan) and offshore Rovinj (Croatia). Morphological analysis shows that extant Tergestiella and the Mesozoic genus Cyclagelosphaera (Watznaueriaceae), thought to have been extinct since the early Eocene (~. 54. Ma), are virtually identical. Molecular phylogenetic study supports the inference that T. adriatica is a direct descendent of Cyclagelosphaera. It is therefore a remarkable example of a living fossil. Our documentation of patchy coastal distribution in living T. adriatica and records of rare occurrences of fossil Cyclagelosphaera in Oligocene-Miocene shallow water sediments. , from the New Jersey shelf, suggest that Tergestiella/. Cyclagelosphaera was restricted to nearshore environments during much of the Cenozoic. This restricted ecology explains the lack of fossil Tergestiella/. Cyclagelosphaera recorded in open ocean sediments deposited during the last 54. myr.Floristic study of coccolithophores in the coastal and offshore waters of Tomari over a six-year period, show that T. adriatica occurs synchronously with the unusual neritic species, Braarudosphaera bigelowii, in mid-June. The environmental factors that induce the co-occurrence of these two taxa are uncertain, and T. adriatica did not co-occur with B. bigelowii at any other sites

    Expedition 306 summary

    No full text
    The overall aim of the North Atlantic paleoceanography study of Integrated Ocean Drilling Program Expedition 306 is to place late Neogene–Quaternary climate proxies in the North Atlantic into a chronology based on a combination of geomagnetic paleointensity, stable isotope, and detrital layer stratigraphies, and in so doing generate integrated North Atlantic millennial-scale stratigraphies for the last few million years. To reach this aim, complete sedimentary sections were drilled by multiple advanced piston coring directly south of the central Atlantic “ice-rafted debris belt” and on the southern Gardar Drift. In addition to the North Atlantic paleoceanography study, a borehole observatory was successfully installed in a new ~180 m deep hole close to Ocean Drilling Program Site 642, consisting of a circulation obviation retrofit kit to seal the borehole from the overlying ocean, a thermistor string, and a data logger to document and monitor bottom water temperature variations through time

    Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record – SVALCLIME, a workshop report

    Get PDF
    ​​​​​​​We held the MagellanPlus workshop SVALCLIME “Deep-time Arctic climate archives: high-resolution coring of Svalbard's sedimentary record”, from 18 to 21 October​​​​​​​ 2022 in Longyearbyen, to discuss scientific drilling of the unique high-resolution climate archives of Neoproterozoic to Paleogene age present in the sedimentary record of Svalbard. Svalbard is globally unique in that it facilitates scientific coring across multiple stratigraphic intervals within a relatively small area. The polar location of Svalbard for some of the Mesozoic and the entire Cenozoic makes sites in Svalbard highly complementary to the more easily accessible mid-latitude sites, allowing for investigation of the polar amplification effect over geological time. The workshop focused on how understanding the geological history of Svalbard can improve our ability to predict future environmental changes, especially at higher latitudes. This topic is highly relevant for the ICDP 2020–2030 Science Plan Theme 4 “Environmental Change” and Theme 1 “Geodynamic Processes”. We concluded that systematic coring of selected Paleozoic, Mesozoic, and Paleogene age sediments in the Arctic should provide important new constraints on deep-time climate change events and the evolution of Earth's hydrosphere–atmosphere–biosphere system. We developed a scientific plan to address three main objectives through scientific onshore drilling on Svalbard: a. Investigate the coevolution of life and repeated icehouse–greenhouse climate transitions, likely forced by orbital variations, by coring Neoproterozoic and Paleozoic glacial and interglacial intervals in the Cryogenian (“Snowball/Slushball Earth”) and late Carboniferous to early Permian time periods. b. Assess the impact of Mesozoic Large Igneous Province emplacement on rapid climate change and mass extinctions, including the end-Permian mass extinction, the end-Triassic mass extinction, the Jenkyns Event (Toarcian Oceanic Anoxic Event), the Jurassic Volgian Carbon Isotopic Excursion and the Cretaceous Weissert Event and Oceanic Anoxic Event 1a. c. Examine the early Eocene hothouse and subsequent transition to a coolhouse world in the Oligocene by coring Paleogene sediments, including records of the Paleocene–Eocene Thermal Maximum, the Eocene Thermal Maximum 2, and the Eocene–Oligocene transition. The SVALCLIME science team created plans for a 3-year drilling programme using two platforms: (1) a lightweight coring system for holes of ∼ 100 m length (4–6 sites) and (2) a larger platform that can drill deep holes of up to ∼ 2 km (1–2 sites). In situ wireline log data and fluid samples will be collected in the holes, and core description and sampling will take place at The University Centre in Svalbard (UNIS) in Longyearbyen. The results from the proposed scientific drilling will be integrated with existing industry and scientific boreholes to establish an almost continuous succession of geological environmental data spanning the Phanerozoic. The results will significantly advance our understanding of how the interplay of internal and external Earth processes are linked with global climate change dynamics, the evolution of life, and mass extinctions
    corecore