727 research outputs found

    Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎβˆ’Π΄ΠΈΠ°Π³Π½ΠΎΡΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ нСйрофизиологичСскиС коррСляты ΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎβˆ’Π»ΠΈΡ‡Π½ΠΎΡΡ‚Π½Ρ‹Ρ… ΠΈ повСдСнчСских расстройств Ρƒ подростков с ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ дисфункциСй

    Get PDF
    ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° Ρƒ подростков с ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ дисфункциСй ΠΈ ΡΠΌΠΎΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ, личностными, повСдСнчСскими расстройствами. ВыявлСны нСйрофизиологичСскиС коррСляты ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° ΠΈ повСдСния Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… подростков.The findings of brain functional activity investigation in teenagers with cerebral dysfunction as well as emotional, personality, behavioral disorders are reported. Neurophysiological correlates of the character and behavior changes in teenβˆ’agers were revealed

    A gravitationally lensed quasar discovered in OGLE

    Get PDF
    IndexaciΓ³n: Scopus; Web of Science.We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ~670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ~60 'red W1-W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made 'the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ~-102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ~20.0mag and I ~19.6mag, respectively, and a lensing galaxy that becomes detectable as I ~21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z=2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ~0.9 Β± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model). Β© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.https://academic.oup.com/mnras/article/476/1/663/483368

    Isospin-0 ππ\pi\pi s-wave scattering length from twisted mass lattice QCD

    Full text link
    We present results for the isospin-0 ππ\pi\pi s-wave scattering length calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge configurations. We use three Nf=2N_f = 2 ensembles with unitary (valence) pion mass at its physical value (250∼\simMeV), at 240∼\simMeV (320∼\simMeV) and at 330∼\simMeV (400∼\simMeV), respectively. By using the stochastic Laplacian Heaviside quark smearing method, all quark propagation diagrams contributing to the isospin-0 ππ\pi\pi correlation function are computed with sufficient precision. The chiral extrapolation is performed to obtain the scattering length at the physical pion mass. Our result MΟ€a0I=0=0.198(9)(6)M_\pi a^\mathrm{I=0}_0 = 0.198(9)(6) agrees reasonably well with various experimental measurements and theoretical predictions. Since we only use one lattice spacing, certain systematics uncertainties, especially those arising from unitary breaking, are not controlled in our result.Comment: 21 pages, 5 figures, 6 table

    Discovery of a high state AM CVn binary in the Galactic Bulge Survey

    Get PDF
    We report on the discovery of a hydrogen-deficient compact binary (CXOGBS J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey. Deep archival X-ray observations constrain the X-ray positional uncertainty of the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV counterpart. Optical spectroscopic observations reveal the presence of broad, shallow He i absorption lines while no sign of hydrogen is present, consistent with a high state system. We present the optical lightcurve from Optical Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no evidence for outbursts; variability is present at the 0.2 mag level on timescales ranging from hours to weeks. A modulation on a timescale of years is also observed. A Lomb-Scargle analysis of the optical lightcurves shows two significant periodicities at 22.90 and 23.22 min. Although the physical interpretation is uncertain, such timescales are in line with expectations for the orbital and superhump periods. We estimate the distance to the source to be between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to establish the orbital period, and to determine whether this source can serve as a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter

    Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    Get PDF
    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multi-wavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 Β±\pm 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an AGN or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In 4 cases we identify the sources as binary stars.Comment: Accepted for publication in MNRA

    Constraining the nature of the accreting binary in CXOGBS J174623.5-310550

    Get PDF
    We report optical and infrared observations of the X-ray source CXOGBS J174623.5-310550. This Galactic object was identified as a potential quiescent low-mass X-ray binary accreting from an M-type donor on the basis of optical spectroscopy and the broad Halpha emission line. The analysis of X-shooter spectroscopy covering 3 consecutive nights supports an M2/3-type spectral classification. Neither radial velocity variations nor rotational broadening is detected in the photospheric lines. No periodic variability is found in I- and r'-band light curves. We derive r' = 20.8, I = 19.2 and Ks = 16.6 for the optical and infrared counterparts with the M-type star contributing 90% to the I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial velocity variations implies that the M-type star is not the donor star in the X-ray binary. This could be an interloper or the outer body in a hierarchical triple. We constrain the accreting binary to be a < 2.2 hr orbital period eclipsing cataclysmic variable or a low-mass X-ray binary lying in the foreground of the Galactic Bulge.Comment: (9 pages, 5 figures, accepted for publication in MNRAS
    • …
    corecore