12 research outputs found

    Gegenwärtiger Stand der Phakoemulsifikation in Deutschland - Ergebnisse der BDOC Umfrage 2008

    No full text

    Gegenwärtiger Stand der Phakoemulsifikation in Deutschland - Ergebnisse der BDOC 2008

    No full text

    Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension

    No full text
    Background: There is evidence that perfusion abnormalities of the optic nerve head are involved in the pathogenesis of glaucoma. There is therefore considerable interest in the effects of topical antiglaucoma drugs on ocular blood flow. A study was undertaken to compare the ocular haemodynamic effects of dorzolamide and timolol in patients with primary open angle glaucoma (POAG) or ocular hypertension (OHT). Methods: One hundred and forty patients with POAG or OHT were included in a controlled, randomised, double blind study in two parallel groups; 70 were randomised to receive timolol and 70 to receive dorzolamide for a period of 6 months. Subjects whose intraocular pressure (IOP) did not respond to either of the two drugs were switched to the alternative treatment after 2 weeks. Scanning laser Doppler flowmetry was used to measure blood flow in the temporal neuroretinal rim and the cup of the optic nerve head. Pulsatile choroidal blood flow was assessed using laser interferometric measurement of fundus pulsation amplitude. Results: Five patients did not respond to timolol and were changed to the dorzolamide group, and 18 patients changed from dorzolamide treatment to timolol. The effects of both drugs on IOP and ocular perfusion pressure were comparable. Dorzolamide, but not timolol, increased blood flow in the temporal neuroretinal rim (8.5 (1.6)%, p<0.001 versus timolol) and the cup of the optic nerve head (13.5 (2.5)%, p<0.001 versus timolol), and fundus pulsation amplitude (8.9 (1.3)%, p<0.001 versus timolol). Conclusions: This study indicates augmented blood flow in the optic nerve head and choroid after 6 months of treatment with dorzolamide, but not with timolol. It remains to be established whether this effect can help to reduce visual field loss in patients with glaucoma

    Traffic-related air pollution and spectacles use in schoolchildren

    Get PDF
    Purpose: To investigate the association between exposure to traffic-related air pollution and use of spectacles (as a surrogate measure for myopia) in schoolchildren. Methods: We analyzed the impact of exposure to NO2 and PM2.5 light absorbance at home (predicted by land-use regression models) and exposure to NO2 and black carbon (BC) at school (measured by monitoring campaigns) on the use of spectacles in a cohort of 2727 schoolchildren (7–10 years old) in Barcelona (2012–2015). We conducted cross-sectional analyses based on lifelong exposure to air pollution and prevalent cases of spectacles at baseline data collection campaign as well as longitudinal analyses based on incident cases of spectacles use and exposure to air pollution during the three-year period between the baseline and last data collection campaigns. Logistic regression models were developed to quantify the association between spectacles use and each of air pollutants adjusted for relevant covariates. Results: An interquartile range increase in exposure to NO2 and PM2.5 absorbance at home was respectively associated with odds ratios (95% confidence intervals (CIs)) for spectacles use of 1.16 (1.03, 1.29) and 1.13 (0.99, 1.28) in cross-sectional analyses and 1.15 (1.00, 1.33) and 1.23 (1.03, 1.46) in longitudinal analyses. Similarly, odds ratio (95% CIs) of spectacles use associated with an interquartile range increase in exposures to NO2 and black carbon at school was respectively 1.32 (1.09, 1.59) and 1.13 (0.97, 1.32) in cross-sectional analyses and 1.12 (0.84, 1.50) and 1.27 (1.03, 1.56) in longitudinal analyses. These findings were robust to a range of sensitivity analyses that we conducted. Conclusion: We observed increased risk of spectacles use associated with exposure to traffic-related air pollution. These findings require further confirmation by future studies applying more refined outcome measures such as quantified visual acuity and separating different types of refractive errors.The research leading to these results has received funding from the European Research Council under the ERC Grant Agreement number 268479 –the BREATHE project. Payam Dadvand is funded by a Ramón y Cajal fellowship (RYC-2012-10995) awarded by the Spanish Ministry of Economy and Competitiveness
    corecore