158 research outputs found
Inference for Unreplicated Factorial and Fractional Factorial Designs.
The ability to determine which factors significantly affect a product or process can help to improve its quality. Usually there are many factors to be considered initially, but a limited amount of time and money, so it is important to screen the numerous factors with a limited number of experimental trials. In this situation, unreplicated factorial and fractional factorial designs are often used, but because these experiments are unreplicated they do not possess a formal estimate of the experimental error variance. Several methods have been proposed by Daniel, Box and Meyer, Benski, Lenth, and Schneider, Kasperski, and Weissfeld to determine the significant effects in these experiments. This research focuses on an in-depth comparison of the aforementioned methods under a variety of practical situations commonly found in industrial experiments. Each method will be critically evaluated, with the culmination of the work being a recommendation for the use of the various methods
Re-orientation Transition in Molecular Thin Films: Potts Model with Dipolar Interaction
We study the low-temperature behavior and the phase transition of a thin film
by Monte Carlo simulation. The thin film has a simple cubic lattice structure
where each site is occupied by a Potts parameter which indicates the molecular
orientation of the site. We take only three molecular orientations in this
paper which correspond to the 3-state Potts model. The Hamiltonian of the
system includes: (i) the exchange interaction between nearest-neighbor
sites and (ii) the long-range dipolar interaction of amplitude
truncated at a cutoff distance (iii) a single-ion perpendicular
anisotropy of amplitude . We allow between surface spins, and
otherwise. We show that the ground state depends on the the ratio
and . For a single layer, for a given , there is a critical value
below (above) which the ground-state (GS) configuration of molecular axes
is perpendicular (parallel) to the film surface. When the temperature is
increased, a re-orientation transition occurs near : the low- in-plane
ordering undergoes a transition to the perpendicular ordering at a finite ,
below the transition to the paramagnetic phase. The same phenomenon is observed
in the case of a film with a thickness. We show that the surface phase
transition can occur below or above the bulk transition depending on the ratio
. Surface and bulk order parameters as well as other physical quantities
are shown and discussed.Comment: 7 pages, 11 figures, submitted for publicatio
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
Criticality Analysis of Activity Networks under Interval Uncertainty
Dedicated to the memory of Professor Stefan Chanas - The extended abstract version of this paper has appeared in Proceedings of 11th International Conference on Principles and Practice of Constraint Programming (CP2005) ("Interval Analysis in Scheduling", Fortin et al. 2005)International audienceThis paper reconsiders the Project Evaluation and Review Technique (PERT) scheduling problem when information about task duration is incomplete. We model uncertainty on task durations by intervals. With this problem formulation, our goal is to assert possible and necessary criticality of the different tasks and to compute their possible earliest starting dates, latest starting dates, and floats. This paper combines various results and provides a complete solution to the problem. We present the complexity results of all considered subproblems and efficient algorithms to solve them
Recommended from our members
Development of a wind gust model to estimate gust speeds and their return periods
Spatially dense observations of gust speeds are necessary for various applications, but their availability is limited in space and time. This work presents an approach to help to overcome this problem. The main objective is the generation of synthetic wind gust velocities. With this aim, theoretical wind and gust distributions are estimated from 10 yr of hourly observations collected at 123 synoptic weather stations provided by the German Weather Service. As pre-processing, an exposure correction is applied on measurements of the mean wind velocity to reduce the influence of local urban and topographic effects. The wind gust model is built as a transfer function between distribution parameters of wind and gust velocities. The aim of this procedure is to estimate the parameters of gusts at stations where only wind speed data is available. These parameters can be used to generate synthetic gusts, which can improve the accuracy of return periods at test sites with a lack of observations. The second objective is to determine return periods much longer than the nominal length of the original time series by considering extreme value statistics. Estimates for both local maximum return periods and average return periods for single historical events are provided. The comparison of maximum and average return periods shows that even storms with short average return periods may lead to local wind gusts with return periods of several decades. Despite uncertainties caused by the short length of the observational records, the method leads to consistent results, enabling a wide range of possible applications
Integrated Risk Assessment for the Blue Economy
With the anticipated boom in the âblue economyâ and associated increases in industrialization across the worldâs oceans, new and complex risks are being introduced to ocean ecosystems. As a result, conservation and resource management increasingly look to factor in potential interactions among the social, ecological and economic components of these systems. Investigation of these interactions requires interdisciplinary frameworks that incorporate methods and insights from across the social and biophysical sciences. Risk assessment methods, which have been developed across numerous disciplines and applied to various real-world settings and problems, provide a unique connection point for cross-disciplinary engagement. However, research on risk is often conducted in distinct spheres by experts whose focus is on narrow sources or outcomes of risk. Movement toward a more integrated treatment of risk to ensure a balanced approach to developing and managing ocean resources requires cross-disciplinary engagement and understanding. Here, we provide a primer on risk assessment intended to encourage the development and implementation of integrated risk assessment processes in the emerging blue economy. First, we summarize the dominant framework for risk in the ecological/biophysical sciences. Then, we discuss six key insights from the long history of risk research in the social sciences that can inform integrated assessments of risk: (1) consider the subjective nature of risk, (2) understand individual social and cultural influences on risk perceptions, (3) include diverse expertise, (4) consider the social scales of analysis, (5) incorporate quantitative and qualitative approaches, and (6) understand interactions and feedbacks within systems. Finally, we show how these insights can be incorporated into risk assessment and management, and apply them to a case study of whale entanglements in fishing gear off the United States west coast
- âŠ