177 research outputs found

    Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom

    Get PDF
    The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS) helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100) to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.Comment: 7 figures, 12 pages, main text and supplementary materia

    Beta and theta oscillations differentially support free versus forced control over multiple-target search

    Get PDF
    Many important situations require human observers to simultaneously search for more than one object. Despite a long history of research into visual search, the behavioral and neural mechanisms associated with multiple-target search are poorly understood. Here we test the novel theory that the efficiency of looking for multiple targets critically depends on the mode of cognitive control the environment affords to the observer. We used an innovative combination of electroencephalogram (EEG) and eye tracking while participants searched for two targets, within two different contexts: either both targets were present in the search display and observers were free to prioritize either one of them, thus enabling proactive control over selection; or only one of the two targets would be present in each search display, which requires reactive control to reconfigure selection when the wrong target has been prioritized. During proactive control, both univariate and multivariate signals of beta-band (15–35 Hz) power suppression before display onset predicted switches between target selections. This signal originated over midfrontal and sensorimotor regions and has previously been associated with endogenous state changes. In contrast, imposed target selections requiring reactive control elicited prefrontal power enhancements in the delta/theta band (2– 8 Hz), but only after display onset. This signal predicted individual differences in associated oculomotor switch costs, reflecting reactive reconfiguration of target selection. The results provide compelling evidence that multiple target representations are differentially prioritized during visual search, and for the first time reveal distinct neural mechanisms underlying proactive and reactive control over multiple-target search

    Frontal cortex differentiates between free and imposed target selection in multiple-target search

    Get PDF
    Cognitive control can involve proactive (preparatory) and reactive (corrective) mechanisms. Using a gaze-contingent eye tracking paradigm combined with fMRI, we investigated the involvement of these different modes of control and their underlying neural networks, when switching between different targets in multiple-target search. Participants simultaneously searched for two possible targets presented among distractors, and selected one of them. In one condition, only one of the targets was available in each display, so that the choice was imposed, and reactive control would be required. In the other condition, both targets were present, giving observers free choice over target selection, and allowing for proactive control. Switch costs emerged only when targets were imposed and not when target selection was free. We found differential levels of activity in the frontoparietal control network depending on whether target switches were free or imposed. Furthermore, we observed core regions of the default mode network to be active during target repetitions, indicating reduced control on these trials. Free and imposed switches jointly activated parietal and posterior frontal cortices, while free switches additionally activated anterior frontal cortices. These findings highlight unique contributions of proactive and reactive control during visual search

    The spatiotemporal profile of cortical processing leading up to visual perception

    Get PDF
    Much controversy exists around the locus of conscious visual perception in human cortex. Some authors have proposed that its neural correlates correspond with recurrent processing within visual cortex, whereas others have argued they are located in a frontoparietal network. The present experiment aims to bring together these competing viewpoints. We recorded EEG from human subjects that were engaged in detecting masked visual targets. From this, we obtained a spatiotemporal profile of neural activity selectively related to the processing of the targets, which we correlated with the subjects' ability to detect those targets. This made it possible to distinguish between those stages of visual processing that correlate with human perception and those that do not. The results show that target induced extra-striate feedforward activity peaking at 121 ms does not correlate with perception, whereas more posterior recurrent activity peaking at 160 ms does. Several subsequent stages show an alternating pattern of frontoparietal and occipital activity, all of which correlate highly with perception. This shows that perception emerges early on, but only after an initial feedforward volley, and suggests that multiple reentrant loops are involved in propagating this signal to frontoparietal areas

    Attenuated alpha oscillation and hyperresponsiveness reveals impaired perceptual learning in migraineurs.

    Get PDF
    Background: Anomalous phantom visual perceptions coupled to an aversion and discomfort to some visual patterns (especially grating in mid-range spatial frequency) have been associated with the hyperresponsiveness in migraine patients. Previous literature has found fluctuations of alpha oscillation (8-14 Hz) over the visual cortex to be associated with the gating of the visual stream. In the current study, we examined whether alpha activity was differentially modulated in migraineurs in anticipation of an upcoming stimulus as well as post-stimulus periods. Methods: We used EEG to examine the brain activity in a group of 28 migraineurs (17 with aura/11 without) and 29 non-migraineurs and compared their alpha power in the pre/post-stimulus period relative to the onset of stripped gratings. Results: Overall, we found that migraineurs had significantly less alpha power prior to the onset of the stimulus relative to controls. Moreover, migraineurs had significantly greater post-stimulus alpha suppression (i.e event-related desynchronization) induced by the grating in 3 cycles per degree at the 2nd half of the experiment. Conclusions: These findings taken together provide strong support for the presence of the hyperresponsiveness of the visual cortex of migraine sufferers. We speculate that it could be the consequence of impaired perceptual learning driven by the dysfunction of GABAergic inhibitory mechanism
    • …
    corecore