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Behavioral/Cognitive

Beta and Theta Oscillations Differentially Support Free
Versus Forced Control over Multiple-Target Search

X Joram van Driel,1 X Eduard Ort,1 X Johannes J. Fahrenfort,1,2* and X Christian N.L. Olivers1*
1Department of Experimental and Applied Psychology, Institute for Brain and Behavior, Faculty of Behavioral and Movement Science, Vrije Universiteit
Amsterdam, 1081 BT Amsterdam, The Netherlands, and 2Department of Psychology, Amsterdam Brain and Cognition, University of Amsterdam, 1018 WS
Amsterdam, The Netherlands

Many important situations require human observers to simultaneously search for more than one object. Despite a long history of research
into visual search, the behavioral and neural mechanisms associated with multiple-target search are poorly understood. Here we test the
novel theory that the efficiency of looking for multiple targets critically depends on the mode of cognitive control the environment affords
to the observer. We used an innovative combination of electroencephalogram (EEG) and eye tracking while participants searched for two
targets, within two different contexts: either both targets were present in the search display and observers were free to prioritize either one
of them, thus enabling proactive control over selection; or only one of the two targets would be present in each search display, which
requires reactive control to reconfigure selection when the wrong target has been prioritized. During proactive control, both univariate
and multivariate signals of beta-band (15–35 Hz) power suppression before display onset predicted switches between target selections.
This signal originated over midfrontal and sensorimotor regions and has previously been associated with endogenous state changes. In
contrast, imposed target selections requiring reactive control elicited prefrontal power enhancements in the delta/theta band (2– 8 Hz),
but only after display onset. This signal predicted individual differences in associated oculomotor switch costs, reflecting reactive
reconfiguration of target selection. The results provide compelling evidence that multiple target representations are differentially prior-
itized during visual search, and for the first time reveal distinct neural mechanisms underlying proactive and reactive control over
multiple-target search.

Key words: beta band; cognitive control; medial frontal cortex; priority states; theta band; visual search

Introduction
Baggage scanning, medical image screening, and sports match
refereeing are just a few of the activities in which human observ-

ers are required to look for multiple relevant visual signals. Stud-
ies of visual search behavior have found that multiple-target
search comes with performance costs (Maljkovic and Nakayama,
1994; Houtkamp and Roelfsema, 2009; Menneer et al., 2009;
Dombrowe et al., 2011; Grubert and Eimer, 2013; Mitroff et al.,
2015; Liu and Jigo, 2017). Targets are detected more slowly, and
are more often missed when observers try to search for more than
a single object simultaneously. These costs emerge in particular
when a target changes between consecutive searches compared
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Significance Statement

Searching for more than one object in complex visual scenes can be detrimental for search performance. Although perhaps
annoying in daily life, this can have severe consequences in professional settings such as medical and security screening. Previous
research has not yet resolved whether multiple-target search involves changing priorities in what people attend to, and how such
changes are controlled. We approached these questions by concurrently measuring cortical activity and eye movements using EEG
and eye tracking while observers searched for multiple possible targets. Our findings provide the first unequivocal support for the
existence of two modes of control during multiple-target search, which are expressed in qualitatively distinct time-frequency
signatures of the EEG both before and after visual selection.
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with when it repeats, suggesting a differential prioritization of the
different target representations (Found and Müller, 1996; Huang
and Pashler, 2007; Kristjánsson and Campana, 2010; Olivers et
al., 2011). However, other studies have reported evidence that
two different target objects can be found interchangeably
without switch costs, thus supporting theories which state that
multiple targets can be prioritized equally in parallel (Beck et
al., 2012; Grubert and Eimer, 2015; Beck and Hollingworth,
2017; Kristjánsson et al., 2018).

Recent behavioral evidence from our laboratory indicates that
the environmental context, and the type of cognitive control
mechanisms it allows for, is an important determinant of switch
costs in multiple-target search (Ort et al., 2017, 2018). Using a
gaze-contingent search task in which observers looked for two
different targets, we found that saccade latencies were prolonged
when the target changed from one trial to the next, but only so
when either one of the targets was available per display. In this
context, target switches are necessarily imposed upon the ob-
server. If the wrong target happens to be prioritized, this requires
a reactive reconfiguration to select the unanticipated target (cf.
Found and Müller, 1996; Monsell, 2003). By definition, such a
reactive control process can only start after display onset, result-
ing in time costs. In contrast, we found that when both sought-for
targets were available in each display, observers still frequently
switched from one target to the other, but now without switch
costs. With the foreknowledge of this target availability, observers
can freely choose which target to select next. They can thus switch
proactively, before each display, with little to no switch cost as a
result.

This difference between enforced, reactive control and free,
proactive control has been proposed before in the context of task
switches (Braver, 2012), distractor suppression (Geng, 2014),
and spatial cueing (Taylor et al., 2008), but its role in visual search
is currently unknown. Moreover, because saccades are only the
end result of the selection process, our previous findings provide
at best an indirect measure of assumed modes of control. To
provide a more direct measure of cognitive states both before and
after target switches, we used a hybrid approach of concurrently
measuring both eye gaze and the electroencephalogram (EEG) of
participants instructed to look simultaneously for two different
color-defined targets. Specifically, we tested the hypothesis that
free target choice during search is supported by endogenously
triggered, proactive control that may be akin to internally driven,
voluntary action selection (Forstmann et al., 2007; Frith and
Haggard, 2018), and most likely originates in medial and lateral
frontal cortical areas (Taylor et al., 2008; Schuck et al., 2015;
Wisniewski et al., 2015). Crucially, such a proactive control signal
should already emerge before a target switch. Reactive control has
previously been tied to an increase in oscillatory power in the
theta frequency range (3– 8 Hz) over prefrontal brain areas after
an unexpected task-switch (Cunillera et al., 2012), a novel stim-
ulus (Cavanagh et al., 2011), or response conflict (Cohen, 2014a).
Yet its role in visual target selection is unknown. Here, we hy-
pothesized that such reactive control-related signal changes
might also occur in multiple-target search, but only after a target
switch, and specifically when such switches are imposed.

Materials and Methods
Participants. Thirty healthy human participants (18 male) with normal
or corrected-to-normal vision participated in this study for course credit
or monetary compensation. The study was conducted in accordance with
the Declaration of Helsinki and was approved by the faculty’s Scientific

and Ethical Review Board (VCWE). Written informed consent was
obtained.

Task. Participants performed two conditions of a multiple-target gaze-
contingent visual search task (Ort et al., 2017) in a blocked-design. The
two versions differed in whether both or only one of two memorized
search targets were available for selection in the subsequent search dis-
plays. The following task settings and stimulus parameters were identical
across these two conditions.

The stimulus set consisted of six colored disks extending over a visual
angle of 1.3°. The RGB values of these colors were (0, 128, 175) for blue,
(196, 79, 104) for red, (79, 123, 51) for green, (163, 107, 34) for brown,
(142, 101, 183) for purple, and (120, 120, 120) for gray. All colors were
isoluminant (M � 20 cd/m 2). The background color was black (0, 0, 0).

After fixation drift correction (see Apparatus and eye tracking), a block
began with a fixation cross for 500 ms, followed by a cue display for 2500
ms and another fixation cross for 500 ms (Fig. 1). The cue display con-
sisted of two colored disks 1.06° to the left and right of fixation and
indicated the two target colors for the upcoming sequence of 40 search
displays. The search displays each consisted of four colored and two
identical gray disks, arranged in a hexagonal lattice with vertical rows
and each at a distance of 3.9° from the hexagon’s center, which coin-
cided with the fixation cross. Because of their regular positioning
within a hexagon, the complete lattice on which stimuli could appear
resembled a honeycomb structure. Participants were instructed to
make a single eye movement toward a disk that matched either one of
the target colors. The other items were distractors, not to be fixated.
After target fixation, the stimuli were removed from the display and
the fixated target was replaced by a white, filled circle, spanning 0.2°,
to provide participants with a fixation point while participants waited
for the next search display. If gaze position was not further than 1.95°
away from this fixation point, the next display appeared after 850 –
1050 ms (randomly jittered). If participants failed to fixate this point
for 5000 ms, a warning message appeared in the middle of the screen
for 1000 ms, reminding them to look at the fixation point while
waiting for the next search display. Because the coordinates of the
previously fixated target determined the position starting point for
the next display (the center of the hexagonal lattice), the search
moved across the screen throughout a block, resembling natural eye
movements during visual search when all items are present simulta-
neously. When the stimulus sequence approached an edge or the
corner of the screen, the target (or targets) were randomly assigned to
one (or two) of the three positions in the hexagon that were closest to
the center of the screen, such that the next fixation would be directed
away from the edge or corner. Although in such case the number of
positions at which the targets could appear was thus reduced, partic-
ipants still could not predict where exactly a specific color would
appear.

Fixations had to land within a 2° visual angle radius around the target
to be counted as valid. This ensured that fixations for targets and/or
distractors could never overlap. If participants fixated one of the distrac-
tors, they received auditory feedback and were required to make a cor-
rective eye movement toward a target. The search was aborted if no target
was fixated within 3000 ms, and a new search display appeared.

There were two main factors. First, at the block level, target availability
was manipulated. In the Free selection condition, both cued target colors
appeared in the search display together with two gray and two colored
distractors. In contrast, in the Imposed selection condition, only one of
the two cued colors appeared in the search display together with two gray
distractors and three colored distractor. Note that distractor colors re-
mained fixed at the block level, and could be target colors in other blocks.
The second factor was whether target color selection switched or re-
peated. Note that this latter factor was determined by either the observer
(Free selection condition), or by a random sampling procedure, in which
a sequence of target switches and target repetitions was randomly drawn
(with replacement) from a pool of potential sequences (Imposed selec-
tion condition). Note that only the sequence of target switches and re-
peats was replayed, not the specific colors or positions of the search items,
so that participants could not anticipate where a particular search target
would appear. To match switch rate and streak length (successive switch
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or repeat trials) between conditions, sequences that were obtained during
Free selection blocks were used to constitute the pool of replay sequences
for Imposed selection blocks, for each participant separately. The pool of
replay sequences to draw from would grow as the experiment progressed.
Because at the outset of the experiment we did not have any sequences yet
to fill the pool with, we initialized the pool with four prespecified random
sequences of target switches and repetitions (one each for 6, 8, 10, and 12
switches per block). Having a small proportion of fully random se-
quences also further prevented participants from recognizing the order
of switches and repetitions in the sequences, while still closely matching
switch rates between conditions. A paired sample t test showed only a
marginal (nonsignificant) difference between switch rates in the two
conditions (t(29) � 1.91, p � 0.07; Free selection: 31.2%, Imposed selec-
tion: 28.9%). As a double-check, we also asked participants after the
experiment whether they were aware of this replay manipulation in the
Imposed selection blocks, and none of them were.

In total, there were 40 blocks consisting of 40 search displays each. The
five potential target colors were combined into 10 unique two-color cue
combinations. Per target availability condition, each of these combina-
tions was used twice as the pair of target colors for a block. Before the
experiment started, observers practiced two blocks of both the Free and
Imposed selection conditions.

Apparatus and eye tracking. The experiments were designed and pre-
sented using OpenSesame v3.1.4 (Mathôt et al., 2012) in combination
with PyGaze v0.6, an eye-tracking toolbox (Dalmaijer et al., 2014). Stim-
uli were presented on a 22 inch (diagonal) Samsung Syncmaster 2233RZ
with a resolution of 1680 � 1050 pixels and refresh rate of 120 Hz at a
viewing distance of 75 cm. Eye movements were recorded with the SR
Research EyeLink 1000 tracking system at a sampling rate of 1000 Hz and

a spatial resolution of 0.01° visual angle. The experiments took place in a
dimly lit, sound-attenuated room. The experimenter received real-time
feedback on system accuracy on a second monitor located in an adjacent
room. After every block, eye-tracker accuracy was assessed, and im-
proved as needed by applying a 9-point calibration and validation
procedure.

EEG recording and cleaning. Concurrently with the eye-tracking (ET)
data, EEG data were acquired at 512 Hz from 64 channels (using a Bio-
Semi ActiveTwo system) placed according to the international 10-20
system, and from both earlobes (used as reference). Off-line, EEG and ET
data were first coregistered using the EYE-EEG toolbox v0.4 (Dimigen et
al., 2011) for EEGLAB v12.0.2.3b (Delorme and Makeig, 2004) in
MATLAB 2014a and 2015a (MathWorks). All standard settings of the
EYE-EEG tutorial were used (http://www2.hu-berlin.de/eyetracking-
eeg); the minimum plausible interval between saccades was set to 50 ms;
from clusters of saccades within this interval, only the first was stored.
Quality of EEG-ET synchronization was visually inspected using recom-
mendations from the EYE-EEG tutorial; all datasets showed good syn-
chronization and eye movement properties (i.e., fixation heat maps and
saccade angular histograms).

Next, EEG data were high-pass filtered at 0.5 Hz before time-frequency
analysis to remove drifts and other non-stationarities (Cohen, 2014b),
and 2.5 Hz solely for independent component analysis (ICA) to improve
its signal-to-noise ratio (Winkler et al., 2015; O. Dimigen, personal com-
munication). Continuous EEG data were epoched from �2.5 to 3 s sur-
rounding the onset of the search display (to avoid edge artifacts resulting
from wavelet filtering, see below). The vertical electro-oculogram was
recorded from electrodes located 2 cm above and below the right eye, and
the horizontal EOG was recorded from electrodes 1 cm lateral to the
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Figure 1. Task design and behavioral results. A, A block began with a fixation cross, and a cue indicating the two target colors for the subsequent sequence of search displays. Depending on the
condition each search display contained either one target color (Imposed selection condition; hypothesized to require reactive control on a significant portion of trials) or both target colors (Free
selection condition; allowing for efficient proactive control throughout the block). Participants were required to make an eye movement to, and fixate (one of) the (two) target(s), which then
triggered the next display. B, Left, Saccadic latency in milliseconds as a function of condition (green, Free selection condition; red, Imposed selection condition) and trial type (open dots, repeat trials;
filled dots, switch trials). Each dot shows the trial-average data of a single observer. Horizontal lines show the group average. Gray lines connecting the dots visualize the within-subject difference
between repeat and switch trials. Colored asterisks show the within-condition comparison of repeat versus switch trials, thus illustrating switch costs in both conditions. Right, Switch-costs in ms
for Free selection (green triangles) and Imposed selection (red triangles) conditions. Gray lines and asterisks show the interaction effect of a stronger switch costs in the Imposed selection than in the
Free selection condition. **p � 0.01, ***p � 0.001.
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external canthi. The EOG data were used together with EEG and ET data
for automatic detection of oculomotor independent components (see
below). Epochs were baseline-normalized using the whole epoch as base-
line, which has been shown to improve (Groppe et al., 2009). Before
cleaning, the data were visually inspected for malfunctioning electrodes,
which were temporarily removed from the data (17 of 30 participants had
1–3 malfunctioning electrodes).

To detect epochs that were contaminated by muscle artifacts, we used
an adapted version of an automatic trial-rejection procedure as imple-
mented in the Fieldtrip toolbox (Oostenveld et al., 2011), using a 110 and
140 Hz pass-band to capture high-frequency muscle activity, and allow-
ing for variable z-score cutoffs per participant based on the within-
subject variance of z-scores. This procedure resulted in an average of
7.86% rejected trials (min–max across participants: 1.56 –21.38%). After
trial rejection, we performed ICA as implemented in EEGLAB only on
the clean EEG, and EOG electrodes. Next, correlations between ET and
independent components were used to automatically detect oculomotor
artifacts, using the variance-ratio criterion suggested by Plöchl et al.
(2012) and as implemented in EYE-EEG; we removed on average 3.63
components (min–max across participants: 1–5). Finally, the malfunc-
tioning electrodes identified before ICA were interpolated using
EEGLAB’s eeg_interp.m function.

We only selected those trials that had a “clean” saccade-trajectory from
initial fixation after search-display onset, to final fixation on a target-
matching disk (which marked search-display offset). That is, intermedi-
ate fixations within such a trajectory had to fall within 30° around a
straight line from initial fixation to (1 of 2) target(s). Trials that did not
meet this criterion may have had trajectories in which saccades were first
drawn toward distractors, even though they finally landed on a correct
target. This selection procedure together with EEG artifact rejection re-
sulted in an average of 360 (min–max across participants: 142–599) re-
peat and 145 (28 –316) switch trials in the Free selection condition;
Imposed selection condition: 351 (177–521) repeat and 113 (45–188)
switch trials being retained.

For time-frequency analyses, first the surface Laplacian of the EEG
data was estimated (Perrin et al., 1989; Kayser and Tenke, 2015), which
sharpens EEG topography and filters out distant effects that may be due
to volume conducted activity from deeper brain sources (Oostendorp
and van Oosterom, 1996; Winter et al., 2007). The Laplacian can thus be
interpreted as a spatial high-pass filter. For estimating the surface Lapla-
cian, we used a 10th-order Legendre polynomial, and lambda was set at
10 �5.

Behavioral analysis. Our main behavioral variable of interest was trial-
averaged latencies of the first eye movement (dwell time before a saccade
toward a target was executed). Mean saccade latencies were computed
separately for the Free and Imposed selection blocks, and separately for
repeat trials (selected target color at trial N was the same as the selected
target color at trial N � 1) and switch trials (selected target color at trial
N was different from the selected target color at trial N � 1). We took the
first saccade after search display onset, provided that it met the selection
criterion as described above. Next, a saccade latency filter was applied, in
which saccades quicker than 100 ms and slower than 3 SD above the
block mean for that participant were excluded (average of 2.5% of all
trials). Average saccade latencies per participant were entered in a
repeated-measures ANOVA with factors trial type (repeat and switch)
and condition (Free and Imposed), using JASP v0.9 (https://www.
jasp-stats.org).

EEG time-frequency decomposition. Epoched EEG time series were de-
composed into their time-frequency representations with custom-
written MATLAB code (github.com/joramvd/tfdecomp). Each epoch
was convolved with a set of complex Morlet wavelets with frequencies
ranging from 1 to 40 Hz in 50 linearly spaced steps. Wavelets were created
by multiplying perfect sine waves (ei2�ft, where i is the complex operator,
f is frequency, and t is time) with a Gaussian (e�t2/ 2s2

, where s is the width
of the Gaussian). The width of the Gaussian was set according to s �
�/2�f, where � represents the number of cycles of each wavelet, linearly
spaced between 3 (for 1 Hz) and 12 (for 40 Hz) to have a good tradeoff
between temporal and frequency precision. From the complex convolu-
tion result Zt (downsampled to 40 Hz), an estimate of frequency-specific

power at each time point was defined as [real(Zt
2) � imag(Zt

2)]. Single-
trial power at each time-frequency point was used for a linear discrimi-
nant classification analysis (see below). Trial averaged power at each
time-frequency point was decibel normalized according to 10 �
log10(power/baseline), where for each channel and frequency, the con-
dition averaged power during the entire trial served as baseline activity.
We chose this baseline procedure because in a fast-paced saccade-driven
trial design there is no optimal neutral baseline time window in, e.g., the
intertrial interval, because of potential condition differences in both
prestimulus and presaccadic and postsaccadic activity. Some baseline
normalization procedure is nonetheless necessary to transform frequency-
specific power to one common scale (i.e., to remove the 1/f scaling of
power), and to correct for single-trial outliers (raw power cannot go �0
but can take relatively large values). Importantly, our main dependent
variable was the difference in time-frequency power between switch and
repeat trials (switch � repeat), in which any common deviation from
“baseline” was subtracted out.

EEG multivariate pattern analysis. In addition to univariate time-
frequency analysis on each single electrode, we applied a backward de-
coding classification algorithm (linear discriminant analysis with all 64
channels as features and “switch” and “repeat” as classes, on time-
frequency decomposed power. The goal of this analysis was to test
whether a classifier could learn from spatial patterns of power modula-
tions in specific time-frequency intervals, whether a participant at a sin-
gle trial was going to repeat target selection or switch to a different target,
and whether this would differ between the Free and the Imposed selec-
tion condition. Moreover, given that we used prestimulus activity, we
could also test whether classifiers could predict such a choice before it
happened.

For this analysis we used ADAM (the Amsterdam Decoding and Mod-
eling toolbox http://www.fahrenfort.com/ADAM.htm), a freely available
MATLAB toolbox for backward decoding and forward encoding model-
ing of EEG and MEG data (Fahrenfort et al., 2018), replacing the stan-
dard time-frequency decomposition algorithm in that toolbox with our
custom written time-frequency decomposition. Training and testing was
done on the same data, for the Free and Imposed selection condition
separately, using a 10-fold cross-validation procedure: first, trials for
each of the two conditions were randomized in order, and divided into 10
equal-sized folds; next, a leave-one-out procedure was used on the 10
folds, such that the classifier was trained on 9 folds and tested on the
remaining fold, and each fold was used once for testing. Classifier per-
formance was then averaged over folds. Because there were more repeat
than stay trials, we balanced the two classes through oversampling, to
ensure that during training the classifier would not develop a bias for the
overrepresented class (Fahrenfort et al., 2018). The classification perfor-
mance output metric was the area under the curve (AUC), with the curve
being the receiver operating curve of the cumulative probabilities that
the classifier assigns to instances as coming from the same class (true-
positives) against the cumulative probabilities that the classifier as-
signs to instances that come from the other class (false-positives). The
AUC takes into account the degree of confidence (distance from the
decision boundary) that the classifier has about class membership of
individual instances, rather than averaging across binary decisions
about class membership of individual instances (as happens when
computing standard accuracy). As such the AUC is considered a sen-
sitive, nonparametric and criterion-free measure of classification
(Hand and Till, 2001). We also inspected the spatial distribution of
the classifier weights, through the product of the classifier weights and
the original data covariance matrix at each time-frequency point. This
procedure results in activation patterns, and are equivalent to the
topographical maps of univariate difference between classes (Haufe et
al., 2014), although now numerically resulting from a decoding anal-
ysis. These maps were further spatially normalized by subtracting the
average of the electrodes in the map, and dividing by the SD across
electrodes in the map. This yielded a z-score per electrode, reflecting
the deviation from average electrode activity across the map ex-
pressed in SD. This normalized map was computed per individual
subject, after which the z values were averaged across subjects.
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Statistical testing. Statistical analyses were done using group-level per-
mutation testing with cluster correction (Maris and Oostenveld, 2007).
For decibel-normalized power, this was done on a switch � repeat con-
trast, for the Free and Imposed selection conditions separately, and on
the double contrast of Free (switch � repeat) � Imposed (switch �
repeat). For the multivariate pattern analysis results, this was done on
AUC values above chance (0.5) for Free and Imposed selection sepa-
rately. In all permutation tests, group-level t values were first computed
for the above contrasts, and for every time-frequency point. These t
values were thresholded at p � 0.05, yielding clusters of significant time-
frequency power modulations. The t values in each of these observed
clusters were summed. Next, in 2000 iterations, the condition labels
(e.g., power values of switch vs repeat, or the AUC value and its 0.5
reference value) were randomized for each subject, before performing
t tests on these permuted data. The sum of t values within the largest
cluster was saved into a distribution of summed cluster t values. This
distribution reflected cluster-level effect-sizes under the null-
hypothesis of no effect. Finally, observed clusters with summed t
values smaller than the 95th percentile of the null-distribution (cor-
responding to p � 0.05) were removed. This approach ensures a
correction for multiple comparisons by taking into account clusters
of spuriously significant time-frequency points that occur purely by
chance. Time-frequency cluster tests were done on the average activ-
ity of electrodes FC1, FCz, and FC2, which we selected based on
previous findings from our laboratory (van Driel et al., 2017). To
visualize the spatial distribution of resulting time-frequency clusters,
we next averaged over the activity within these clusters, and tested the
same trial-type and condition contrasts over all channels, using
cluster-correction across space instead of time-frequency, now with a
(pre-)cluster-threshold of p � 0.01. To evaluate candidate clusters,
we used Fieldtrip’s neighbors structure for 64-channel BioSemi lay-
out, and we set 1 channel as the smallest possible cluster. All reported
“cluster-corrected” p values in Results refer to proportion of per-
muted clusters under the null hypothesis that were larger than the
observed cluster.

Additionally, we ran parametric paired samples t tests and repeated-
measures ANOVAs with factors Target Availability (Free, Imposed) and
Trial type (switch, repeat) over highlighted time-frequency windows,
using JASP v0.9 (https://jasp-stats.org/). We further tested for cross-
subject correlations between brain and behavior measures using the ro-
bust percentage-bend correlation metric that de-weights outliers (Pernet
et al., 2012).

Results
A planned number of 30 participants performed a gaze-
contingent memory-guided visual search task (Fig. 1A). At the
start of every sequence of trials, observers were given a cue as to
which two target colors to look for. A sequence consisted of 40
consecutive search displays each containing a heterogeneous set
of colors, among which either one or two were target colors (de-
pending on condition). Participants were instructed to make an
eye movement toward one of the two target colors while avoiding
distractors. A new display would then emerge with the current
fixation as the starting point. Crucially, in the Free selection con-
dition, both target colors were always present in each search dis-
play, thus allowing observers proactive control over which target
to prioritize from trial to trial. In the Imposed selection condi-
tion, each search display only contained one of the two target
colors, and which target would appear was randomly determined
(with the same distribution of switches as in the Free selection
condition; see Materials and Methods). Thus, here prioritization
for the wrong target would require reactive priority reconfigura-
tion. However, if instead observers prioritize both targets equally,
no changes in proactive nor reactive control are necessary from
trial to trial.

Our results clearly indicate differentially controlled priority
states. First, switch costs in saccadic latency were considerably

larger in the Imposed than in the Free selection condition
(F(1,29) � 14.66, p � 0.001; Fig. 1B). When a change in targets was
task-imposed, observers were slower than when targets repeated
from one trial to the next (by 61 ms on average; SD � 64; t(29) �
5.20, p � 0.001). In fact, there was also a reliable, though much
smaller, switch cost when target selection was free (M � 16 ms;
SD � 26; t(29) � 3.36, p � 0.002). These magnitude differences in
switch costs are a direct replication of earlier findings (Ort et al.,
2017, 2018), and are consistent with, though not conclusive for, a
difference in the moment and type of control.

Second, the EEG data reveal clear differential state changes
associated with freely initiated versus task-imposed switches. In
the Free selection condition, any neural signature reflecting a
preparatory mechanism should be apparent before display onset,
in the time between the offset of the previous and the onset of the
next search display. We moreover hypothesized a potential pro-
active control mechanism to show a topographical distribution
over midfrontal scalp regions, consistent with neuroimaging
studies on voluntary and self-initiated behavior (Schuck et al.,
2015; Wisniewski et al., 2015). Local oscillatory dynamics have
been linked to memory content, motor intentions, and different
modes of control (Donner and Siegel, 2011; Helfrich and Knight,
2016). Therefore, we decomposed the EEG data into its time-
frequency representation, and compared switch-related activity
in three frontocentral electrodes (FC1, FCz and FC2) for Free
versus Imposed selection. The Free selection condition
showed a robust reduction of power in the beta band (15–35
Hz) for switch relative to repeat trials (cluster-corrected, p �
0.001; Fig. 2A), starting �700 ms before the upcoming search
display. The effect comprised one sustained time-frequency
cluster, reducing in bandwidth around the moment of the
saccade, after which the same broadband beta suppression
effect re-emerged post-saccade. Importantly, this effect was
not present in the Imposed selection condition ( p � 0.90).
This difference was also apparent from the Free versus Im-
posed selection contrast, which showed significant switch-
related beta-suppression in a time window �500 ms before the
anticipated onset of the next search display ( p � 0.002), fol-
lowed by poststimulus (and peri-saccade) suppression in the
upper-alpha/lower-beta range (10 –18 Hz; �200 –900 ms; p �
0.002). This shows that in a context of free choice, proactively
deciding to switch to a different target is supported by rela-
tively suppressed midfrontal beta power.

To further test the putative involvement of frontal control
regions, we evaluated the topographical specificity of these ef-
fects. We averaged the activity within the beta-band time-
frequency windows, and tested for clusters of channels that
would show differences between switch and repeat trials and be-
tween conditions. This revealed that the beta-band modulation
in the Free selection condition covered prefrontal as well as pos-
terior parietal scalp regions, with a right-hemisphere dominance
(p � 0.001; Fig. 2B), whereas there was again no effect in the
Imposed selection condition. The prestimulus difference be-
tween conditions was localized to a more confined midfrontal-
premotor region (p � 0.001). Thus we link the endogenous
switching between target representations to modulations of fron-
toparietal beta oscillations.

In contrast, switches in the Imposed selection condition elic-
ited robust low-frequency (2– 8 Hz) delta-to-theta band power
enhancements starting �250 ms post-display onset, over the
three midfrontal channels (Fig. 2A; p � 0.002), which topograph-
ically extended toward anterior and lateral prefrontal scalp re-
gions (p � 0.001; Fig. 2B). Similar medial and lateral prefrontal
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theta-band modulations have been linked to a myriad of conflict-
and error-related performance monitoring mechanisms (for re-
view, see Cavanagh and Frank, 2014; Cohen, 2014a). When we
tested within the theta-band cluster only, both conditions
showed switch-related theta-power enhancement (Free: t(29) �
3.49, p � 0.002; Imposed: t(29) � 5.54, p � 0.001; Fig. 2C), al-

though this effect was reliably stronger in the Imposed selection
than in the Free selection condition (F(1,29) � 6.20, p � 0.019),
and, in the latter case, did not survive cluster correction when
such correction was applied to the entire time-frequency domain
(Fig. 2A, left). Apparently, some selection conflict may have oc-
curred even in the Free selection condition. Finally, if the ob-
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served conflict signal was instrumental in bringing about slower
saccades toward changed targets, this should be reflected in a
correlation between theta power and switch costs. Indeed, stron-
ger theta power for switch compared with repeat trials predicted
higher switch costs across observers in the Imposed selection
condition (robust %-bend correlation: r � 0.53, p � 0.002; Fig.
2D), but not in the Free selection condition (r � 0.17, p � 0.37).
Moreover, the condition differences in switch-related frontal
theta correlated positively with condition differences in saccadic
switch-costs (r � 0.47, p � 0.009). Beta-suppression did not
correlate with behavior in either of the two conditions, and
whether before or after stimulus onset (all r values �0.15, all p
values �0.50).

Together, the above results uncover a clear qualitative disso-
ciation between proactive, preparatory switching reflected in
posterior parietal and sensorimotor beta-band suppression, and
reactive, conflict-related switching reflected in prefrontal theta-
band enhancements. However, these results were obtained by
preselecting EEG channels, and after standard trial-averaging
methodology. To check whether these selections exhaustively
captured all relevant mechanisms, we tested whether we could
predict at the single-trial level whether an observer would switch
or stay, based on the multivariate power distributions across
the scalp for all time and frequency combinations. Linear-
discriminant classifiers were trained on single-trial topographic
distributions across the entire scalp, in dissociating switch from
repeat “classes” across time and frequency (Fahrenfort et al.,
2018). The performance of these classifiers was then trained on
the same time-frequency points (through a cross-validation pro-
cedure; see Materials and Methods). In a time window starting
500 ms before the anticipated search displays in the Free selection
condition, a cluster of activity comprising the �-to-beta band
(10 –30 Hz) indeed predicted whether in the upcoming trial, the
saccade was going to be directed toward a different (switch) or
same (repeat) target as in the previous trial (p � 0.001; Fig. 3A).
This effect reappeared after the saccade (�500 ms poststimulus),
in a slightly lower-frequency range (6 –23 Hz; p � 0.001). Classi-
fication accuracy in the Imposed selection condition showed a
similar broadband poststimulus increase (p � 0.001). However,
and crucially, when target selection was task-imposed there was
no prestimulus beta activity that was predictive of target switches;
instead, the significant poststimulus classification cluster con-
tained relatively stronger modulations in the lower-frequency
range of delta-theta (2– 8 Hz). We directly compared conditions
in these two time windows and frequency bands, and found
that, as expected, the Free selection condition showed stronger
beta decoding before the search display (t(29) � 5.61, p �
0.001; Fig. 3B), whereas the Imposed selection condition
showed stronger theta decoding during search (t(29) � 2.76,
p � 0.010; frequency by condition interaction: F(1,29) � 30.55,
p � 0.001). The forward-transformed topographies of the
classifier weights served as a further validation of our initial
channel selection. Such activation patterns are equivalent to
the univariate difference between conditions (Haufe et al.,
2014; see Materials and Methods). These maps confirmed that
prestimulus decoding in beta (10 –30 Hz) was reflected in a
suppression over midfrontal-premotor channels during Free
selection ( p � 0.002; Fig. 3C), whereas poststimulus decoding
in theta (2– 8 Hz) was reflected in a frontoparietal enhance-
ment under Imposed selection ( p � 0.001).

Post-saccade, the two conditions showed a comparable classi-
fication response in the �-beta range (Fig. 3A). Could this reflect
a similar mechanism after a switch, whether freely chosen or
task-imposed, has been initiated? Using cross-condition decod-
ing (King and Dehaene, 2014), we tested whether the classifier
weights trained on the data of one condition, could predict above
chance whether trials from the other condition were switches or
repeats. This analysis showed that the Free and Imposed selection
conditions indeed cross-generalized to a common post-saccadic
cluster in the alpha/lower-beta band, relatively late into the trial
(8 –20 Hz, 500 –900 ms; p � 0.001; Fig. 3D). This signal may
reflect the top-down implemented changes in prioritization, or
“reconfigured” working memory content, in both conditions.
Indeed, the condition-averaged forward-transformed weights in
this time-frequency window showed a parieto-occipital suppres-
sion (p � 0.001), consistent with switches in priority states (de
Vries et al., 2017, 2018).

Discussion
Our study provides important new insights into the neural mech-
anisms underlying control of target selection in multiple-target
search. First, selecting an alternative target comes with specific
neural state changes. Such state changes are not predicted by
theories that claim that multiple-target search involves the equal,
parallel prioritization of target representations, because a system
that is prepared for both targets does not need to change its state.
Instead, the data provide strong support for trial-by-trial priority
shifts that can be traced through distinct neural signals.

Second, we provide the first neural evidence for dissociable
control mechanisms over target selection. These mechanisms de-
pend on whether the environmental context allows for free
choice over which target to select, or imposes such targets. We
uniquely identified suppression of midfrontal/premotor beta-
band (15–35 Hz) oscillatory activity as the signal that precedes
free target switches with reduced behavioral cost. Importantly,
time-frequency classifiers trained on single instances of beta-
band scalp patterns could accurately predict the occurrence of
these freely initiated switches more than half a second before
they actually happened. We note that although beta suppres-
sion was predictive of the occurrence of a switch, it did not
predict the magnitude of switch costs in saccadic latencies.
This may be the case because these switch costs were very small
to begin with and showed relatively little variation, consistent
with the idea that observers had sufficient time to prepare for
a new target. Together, we therefore interpret beta suppres-
sion as the electrophysiological signature of proactive control.
Consistent with this, when observers were forced to switch, no
prestimulus beta suppression occurred. Instead, here a switch
was followed by a transient burst of prefrontal delta/theta
band (2– 8 Hz) oscillatory power, a signal that has been asso-
ciated with reactive control, and which was positively corre-
lated with individual differences in behavioral switch costs.
We therefore interpret this signal as the electrophysiological
signature of reactive control when observers encounter an un-
anticipated target.

In task switching, proactive control has been linked to various
event-related potential components in EEG, as well as fMRI
BOLD modulations within a frontoparietal network (Sohn et al.,
2000; Rushworth et al., 2002; Braver et al., 2003; Astle et al., 2009;
Karayanidis et al., 2010). However, these studies used explicit
cues instructing observers to switch stimulus-response map-
pings. Our findings provide a novel contribution to this field, as
we found anticipatory beta suppression to precede an endoge-
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nous switch under free choice. This effect was maximal over a
region of the scalp covering midfrontal, precentral, as well as
posterior parietal regions, with a slightly right-lateralized topo-
graphical distribution. Such a sensorimotor network has long
been known to exhibit beta-band rhythmogenesis (Pfurtscheller
et al., 1996; Baker, 2007).

Moreover, our results are in line with several findings link-
ing beta-band dynamics to various internal decision making
processes (Spitzer and Haegens, 2017). For instance, during
somatosensory discrimination, beta power in sensorimotor
and premotor regions can show categorical responses that re-
flect accurate perceptual choices (Haegens et al., 2011), which
build up over time as sensory evidence accumulates (Donner
et al., 2009; Siegel et al., 2011). Integrating these findings, it
has been proposed that one underlying role of beta oscillations
in these processes is to preserve the current sensorimotor or
cognitive state (Engel and Fries, 2010). This can range from

the maintenance of working memory content (Spitzer and
Haegens, 2017), to the stabilization of a bistable percept in the
absence of sensory change (Kloosterman et al., 2015). During
such maintenance, beta oscillatory activity (from local modu-
lations to long-range network synchronization; Donner and
Siegel, 2011) is often observed to increase in strength. Con-
versely, beta activity has been proposed to be inversely related
to the likelihood of an upcoming voluntary change-of-action,
resulting from dopaminergic corticobasal ganglia interactions
(Jenkinson and Brown, 2011). Our findings of suppressed beta
activity directly fit such a proactive function, here imple-
mented during visual search behavior while holding multiple
target objects in working memory. At a more general level they
are also consistent with studies on nonhuman primates show-
ing beta band involvement in the top-down maintenance of a
search target (Buschman and Miller, 2007, 2009), and the
amount of free choice a monkey is allowed in choosing the
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order in which it fixates multiple targets (Pesaran et al., 2008).
Finally, the midfrontal topography of the signal is consistent
with fMRI studies implicating the medial frontal cortex in
self-initiated behavior (Taylor et al., 2008; Schuck et al., 2015;
Wisniewski et al., 2015).

Theta oscillations on the other hand have been proposed to
constitute a key mechanism in medial and lateral prefrontal
cortex that detects conflict and implements cognitive control
(Cavanagh and Frank, 2014), particularly in reacting to an unan-
ticipated mismatch between competing response alternatives of
which only one is appropriate (Cohen, 2014a). Here, we wit-
nessed a qualitatively similar prefrontal theta-band modulation
triggered by what may analogously be an internal conflict be-
tween competing target representations, of which only one
can guide selection. Alternatively, task-imposed switching be-
tween representations may involve novelty processing, the
manipulation of working memory content, or can be consid-
ered a form of prediction error, all of which have also been
shown to elicit changes in prefrontal theta-band dynamics
(Barceló et al., 2006; Cavanagh et al., 2011; Nee et al., 2011;
Itthipuripat et al., 2013; Ullsperger et al., 2014). The fact that
we observed switch-related theta to extend into lower delta-
band frequencies, may link it to prediction-error detection
rather than conflict processing per se (Cohen, 2014a). That is,
performance errors often arise because of conflict and indeed
elicit error-related prefrontal theta increases (van Driel et al.,
2012), but uniquely involve delta-band activity as well (Cohen
and van Gaal, 2014; Munneke et al., 2015).

Accurately applied cognitive control serves behavioral adjust-
ments, which typically result in slower performance (Kerns et al.,
2004; van Driel et al., 2015). Here, the switch-related theta in-
crease indeed predicted the behavioral switch-costs across sub-
jects when switches were enforced. Interestingly, endogenous free
switches also showed, in addition to prestimulus beta suppres-
sion, a similar but weaker theta increase in the trial-averaged
power analysis, which coincided with residual but uncorrelated
behavioral switch-costs (Longman et al., 2013; Ort et al., 2018). It
is likely that even though under free choice observers proactively
prepare to switch, the very presence of both template-matching
targets in the search display invokes some competition between
them, and thus some form of conflict had to be resolved there too.
However, multivariate classifier weights of poststimulus theta ac-
tivity could not accurately dissociate switch from repeat trials
during free choice, rendering it nonetheless a weak signature of
reactive control in this condition.

Note that although the current data support the claim that
changing target selection is accompanied by changes in the ob-
server’s priority state, they do not support the stronger claim
that only a single target representation is active, and can thus
be actively looked for, at a time (Olivers et al., 2011). The data
are also consistent with multiple representations being active
in parallel, but with a measurable difference in attentional
weights (Found and Müller, 1996; de Vries et al., 2018) or
attentional priming (Kristjánsson and Campana, 2010), lead-
ing to various degrees of priority of different target represen-
tations. What our results indicate is that this differential
weighting is disruptive when observers have no choice over
which target they will encounter, but can be overcome when
the observer is given full proactive control.

To conclude, we provide the first direct support for two
modes of control being operative in multiple-target search, which
are expressed in widespread qualitative differences in the time-
frequency landscape of the EEG signal. Moreover, these signal

patterns are predictive of when a switch will occur (under proac-
tive control conditions), or what the switch cost will be (under
reactive control conditions). Our study not only bridges different
findings within the field of visual search, but also connects con-
cordant ideas in the fields of attention and cognitive control.
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