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Abstract 

An extensive body of work has shown that attentional capture is contingent on the goals of the 

observer: Capture is strongly reduced or even eliminated when an irrelevant singleton stimulus does 

not match the target-defining properties (Folk et al., 1992). There has been a long-standing debate on 

whether attentional capture can be explained by goal-driven and/or stimulus-driven accounts. Here, we 

shed further light on this matter by using EEG activity (raw EEG and alpha power) to provide a time-

resolved index of attentional orienting towards salient stimuli, that either matched or did not match 

target-defining properties. A search display containing the target stimulus was preceded by a spatially 

uninformative singleton cue that either matched the color of the upcoming target (contingent cues), or 

that appeared in an irrelevant color (non-contingent cues). Multivariate analysis of raw EEG and alpha 

power revealed preferential tuning to the location of both contingent and non-contingent cues, with a 

stronger bias towards contingent than non-contingent cues. The time course of these effects, however, 

depended on the neural signal. Raw EEG data revealed attentional orienting towards the contingent 

cue early on in the trial (>156 ms), while alpha power revealed sustained spatial selection in the cued 

locations at a later moment in the trial (>250 ms). Moreover, while raw EEG showed stronger capture 

by contingent cues during this early time window, an advantage for contingent cues arose during a 

later time window in alpha band activity. Thus, our findings suggest that raw EEG activity and alpha-

band power tap into distinct neural processes that index separate aspects of covert spatial attention.  

 

Keywords 

Contingent capture; Attentional capture; EEG; Multivariate EEG analyses; Forward encoding models; 

Backward decoding models; Raw EEG; Alpha power. 
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Introduction 

Two opposing views of attentional capture can be distinguished, based on the degree to which 

the internal goals of an observer influence this process. Some have argued for a fully stimulus-driven, 

bottom-up account of attentional capture in which attention is automatically and involuntarily 

allocated to the location of a salient stimulus such as an abrupt onset (Schreij et al., 2008, 2010) or a 

stimulus with unique visual features such as its color or luminance (Kim & Cave, 1999; Theeuwes, 

1991, 1992, 2004), which makes the stimulus “pop-out” from its surrounding elements. By contrast, 

others have argued that attentional capture is contingent on an observer‟s current target template. This 

phenomenon is known as feature-based contingent capture and refers to the observation that attention 

is automatically captured by task-irrelevant stimuli that share vital visual features with the target 

stimulus (Bacon & Egeth, 1994; Egeth & Yantis, 1997; Folk et al., 1992; Folk & Remington, 1998; 

Leber & Egeth, 2006; Wolfe et al., 2003).  

Contingent capture was originally observed in a study by Folk and colleagues (1992) in which 

participants were instructed to detect a target that was either defined based on its color (e.g. a red 

character among white characters) or by its presentation as an abrupt onset. Shortly (150 ms) before 

presenting the target display, a brief cue display was presented consisting of a color or an abrupt onset 

stimulus, presented at one of four possible target locations. The cue location was task-irrelevant and 

did not predict the subsequent target location. The critical observation was that only a cue that shared 

critical features with the expected target stimulus captured attention, resulting in a strong spatial 

validity effect (i.e. faster response times when the cue correctly indicated the target location, as 

compared to when cue and target were presented at different spatial locations). Crucially, when 

participants were searching for a target defined by an abrupt onset, a red cue amongst white distractors 

did not show evidence of attentional capture, whereas this cue did capture attention when participants 

were searching for a red target. This finding was taken as evidence that attentional capture is not solely 

driven by bottom-up processes, but that feature-based attentional mechanisms are instrumental as well 

(but see Belopolsky et al., 2010) 

Recent EEG work has provided converging evidence that attentional capture is contingent on 

the observer‟s feature-based top-down set by measuring the N2pc component. This event-related 
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potential (ERP) component indexes the visual hemifield in which a selected item appears. The N2pc is 

a negative deflection that onsets approximately 200 ms after stimulus onset and is observed over the 

parieto-occipital scalp sites contralateral to selected visual stimuli. Eimer and Kiss (2008) showed that 

the N2pc was elicited in response to a salient and contingent (i.e. target matching) cue, but only when 

the target was presented among distractors. Further evidence that the N2pc reflects feature-based 

attentional processes was provided in a recent study by Grubert and colleagues (2017). They showed 

that non-salient stimuli elicited an N2pc component, but only when these stimuli shared critical 

features with the target and the observer was actively searching for this target. However, when the 

target was already found and the target template was no longer active, the same non-salient stimuli did 

not evoke an N2pc. The findings observed by Grubert and colleagues were taken as evidence that the 

N2pc indeed reflects feature-based attentional processes, and the absence of an N2pc when the 

observer is not actively searching for a target cannot be explained in terms of bottom-up attention (but 

see Hickey et al., 2006, for a bottom-up interpretation of the N2pc). 

Thus, EEG evidence has suggested that an observer‟s target template influences attentional 

allocation by showing a direct relationship between the N2pc and feature-based attentional capture. 

However, one of the shortcomings of using the N2pc as an index of contingent capture is that it is a 

transient neural response that occurs approximately 200 ms post stimulus onset, so it does not allow 

sustained tracking of covert attention during subsequent points in time. In addition, the N2pc as a 

measure of attentional allocation lacks spatial specificity (Fahrenfort, Grubert, Olivers, & Eimer, 

2017). The N2pc is measured as a difference in electrical potential between two electrodes placed over 

ipsi- and contralateral cortical regions (relative to a visual stimulus) and as such does not provide 

information concerning the attended location beyond hemispheric differentiation. These shortcomings, 

as well as those imposed by purely behavioural research, may impede a proper investigation into the 

neural mechanisms underlying feature-based contingent capture. Here, we investigate the contingent 

nature of automatic capture, while simultaneously controlling for bottom-up factors, using a 

temporally resolved method that tracks attentional allocation throughout the entire cue-target interval. 

As the data will show, this provides novel insights in the time course of contingent capture, suggesting 
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distinct early and late neural components to contingent capture that appear to serve different functional 

roles in cue related attentional processes. 

To obtain a high-resolution spatiotemporal profile of contingent capture, we tracked the locus 

of covert attention using the scalp distribution of both raw EEG (Fahrenfort, Grubert, Olivers, & 

Eimer, 2017) and alpha power (Foster, Bsales, et al., 2017; Foster et al., 2016; Foster, Sutterer, et al., 

2017). Recent work has shown that both signals provide time-resolved and precise tracking of 

attended locations, making this an ideal approach for understanding temporal dynamics of automatic 

contingent capture. The current study uses this methodology to characterize the spatiotemporal 

properties of contingent capture, controlled for bottom-up influences, by investigating how contingent 

and non-contingent stimuli influence attentional allocation over time. Following previous studies on 

contingent capture, we utilized a task in which participants were instructed to respond to a target of a 

pre-defined color. Prior to presenting the search array containing the target, a cue display was used 

that contained a singleton color cue surrounded by non-singleton grey stimuli. The color of the cue 

either matched or did not match the color of the target. The logic here is that both cue types may 

capture attention due to their singleton status, but only the cue that matched the target color evokes 

attentional processing related to contingent capture (i.e. capture as a result of having an active target 

template). By subtracting the neural processes related to non-contingent capture from similar 

processes related to contingent capture, one is left with a neural index that is solely related to 

contingent capture, with influences of bottom-up capture removed from this signal. The current study 

investigates the neural time course of contingent and non-contingent capture, as well as the differences 

between these two signals (in the absence of bottom-up factors). 

We note that phase-locked changes in the raw EEG distributed signal were investigated, 

whereas non-phase-locked changes were studied in the induced alpha-band power distribution (see 

Methods). To our knowledge, both neurophysiological correlates of attention (i.e., raw EEG and time-

frequency information in the alpha-band range) have not been combined in a single study. Although 

both neural signals track covert attention and distinguish between contingent and non-contingent cues, 

our results show the divergent time course of these effects, indicating that these different signals may 

tap into distinct aspects of contingent capture.  
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Methods 

Participants 

We tested 33 participants (22 females; mean age ± SD = 22.48 ± 3.21 years) with normal or corrected-

to-normal vision. All participants gave written informed consent prior to the start of the experiment. 

All participants were recruited from the student community of the University of Oregon, USA (25), 

and the student population of Bilkent University, Turkey (8). Participants received a monetary reward 

or course credits for completing the experiment. The experimental procedures of this and all 

subsequent experiments were approved by the ethical committees of the University of Oregon and 

Bilkent University, and are in accordance with the Declaration of Helsinki. 

Out of the 33 tested participants, four had to be discarded for either showing poor behavioral 

performance (accuracy around chance: one participant) or technical issues during measurement (three 

participants). All reported analyses below are based on data from the remaining 29 subjects. 

 

Stimuli and Procedure 

The experiment was conducted at the University of Oregon, USA and Bilkent University, Turkey, 

with near-identical procedures between the testing locations1. Participants were seated in a dimly lit 

room, at a viewing distance of 65 cm from a 22” CRT computer monitor. Prior to the start of the 

experiment, a 20-channel EEG electrode cap was fitted on the scalp of the participants and attached to 

an SA Instrumentation amplifier located in a Faraday cage.  

                                                        
1 The current method section describes the stimuli and procedure as conducted at the University of 
Oregon. Equipment used at Bilkent university consisted of a 20” CRT monitor, 20 selected channels on a 
64-channel cap connected to a BrainAmp amplifier (Cap and Amplifier: Brain Products GmbH). Crucially, 
stimulus timing and physical properties (including visual angle), as well as the precise recording 
electrodes were identical between testing locations. 
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Figure 1. Time course of a typical experimental trial. In this particular trial, the cue is non-contingent (the colors 

of the cue and target do not match) and valid (cue and target are presented at the same location). 

 

Figure 1 shows the time course of a typical experimental trial. Participants started the trial by fixating 

on a centrally presented gray fixation cross (0.3° x 0.3°). After 500 ms, the fixation cross turned black 

for 100 ms as a general indication that the critical part of the trial had started and that participants 

should refrain from making eye movements until the end of the trial. The fixation cross turned back to 

gray for a random period between 800 to 1200 ms (in increments of 100 ms), after which the cue 

screen was presented. The cue screen consisted of eight circles (2.5° radius) presented in a circular 

array around fixation with a radius of 5.0 degrees of visual angle. On each trial, one of the circles was 

presented as a solid red or green disc (luminance 30 cd/m
2
), functioning as a spatially non-predictive 

cue. As these cues had the same luminance, bottom-up factors that influenced attention were equated 
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between the contingent and non-contingent conditions. After 50 ms, all circles, including the cue, were 

removed from the screen for either 100 or 600 ms during which only the fixation cross remained 

present. Following this fixation-only interval the search array was presented for 50 ms, consisting of 

eight circles, each having a small opening on the right or the left side. On each trial, the target circle 

was presented in a predefined color that remained constant throughout the experiment (red and green, 

counterbalanced over participants). Participants were instructed to give a speeded response indicating 

on which side the circle had a small opening. 

Short and long inter-stimulus intervals (Stimulus Onset Asynchrony: SOA) were used such 

that trials with a short SOAs (cue onset – target onset: 150 ms) reflected classic studies on contingent 

capture in order to illustrate any behavioral effects. Trials with a long SOA (cue onset – target onset: 

650 ms) were used to investigate how contingent and non-contingent cues influenced automatic effects 

of capture, as well as any spatial biases that were sustained for longer periods of time (up to 1000 ms 

after cue onset). Trials with short and long SOAs were randomly intermixed in each experimental 

block. 

Cues were either contingent (having the same color as the target) or non-contingent (having a 

different color as the target). An equal number of contingent and non-contingent cues were used by 

counterbalancing the number of red and green cues and randomizing their order within the experiment. 

Furthermore, cue and target location were fully counterbalanced and presented equally often at each of 

the eight locations in the visual field, resulting in a cue (location) validity of 12.5%. The experiment 

consisted of 1280 (71.4%) trials with long SOAs and 512 (28.6%) trials with short SOAs. Finally, the 

eight cue and target locations were not fixed, but could be presented anywhere on the radius around 

fixation, with the limitation that the inter-stimulus distance remained constant at 4.14˚ degrees (i.e., 

the whole display could rotate, but the eight individual circles were always presented equidistant at a 

45˚ angle between the center of the screen and two adjacent stimuli) and that locations were kept 

constant within a trial. As a result of this „random‟ placement, the circle on which the stimuli were 

presented was divided in eight equally large segments, with each segment representing one location, 

despite the precise position of a stimulus within this segment. Therefore, we will refer to these 
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segments as locations from here on. The entire session, including EEG preparation took approximately 

2.5 hours to complete. 

 

EEG Recording and Preprocessing 

A 20-channel electro-cap (Electro-Cap international) was used to record EEG from the following 

electrodes: F3, FZ, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, PO3, PO4, PO7, PO8, POZ, T5, T6, O1, and 

O2. The left mastoid was used as an online reference and all data was re-referenced offline to the 

average of all electrodes. HEOG was obtained by placing two electrodes at the outer canthi of both 

eyes, enabling the measurements of horizontal eye movements. VEOG and blinks were measured by 

placing an electrode above and below the left eye2. All incoming signals (EEG and EOG) were 

amplified and filtered with a bandpass filter of 0.01– 80 Hz. Subsequently, all signals were online 

resampled at 250 Hz. Impedances were kept below 5 kΩ throughout the experiment. In order to obtain 

a reliable response to the cue, not modulated by other visual stimulation, only the trials with a long 

SOA were included in the EEG analyses. 

Next, the EEG data was segmented in 2s epochs around cue onset (-500:1500). The 

contribution of eye blinks to the EEG signal was removed from the epoched data using an independent 

component analysis (ICA), by removing components that showed clear blink-related activity. Next, all 

ICA corrected epochs that contained data from trials with behaviorally incorrect responses were 

removed. The remaining epochs were checked for eye movements made in the time window 0-650 ms 

(i.e., from cue onset until target onset). Eye movements were detected by moving a 50 ms window 

over the preprocessed EEG data in steps of 50 ms within the HEOG or VEOG channels. Amplitude 

changes of 25 µv within that window were flagged as eye-movements and any trial containing such 

artifacts were subsequently deleted from the data set (2.95%). Finally, epochs containing muscle 

artifacts were removed from the data by calculating the z-value of the power values in the EEG signal, 

for frequencies above 110 Hz (up to 125 Hz). Trials that contained z-score outliers more than 3 

                                                        
2 The procedure for measuring eye movements at Bilkent University was slightly different as it relied on 
the placement of only one electrode diagonally under the left eye to pick up the HEOG and the VEOG 
signal. This procedure proved more than capable in picking up horizontal and vertical eye movements as 
well as eye blinks. 
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standard deviations away from the absolute value of the minimum negative z-score were marked as 

containing a muscle artifact and were removed from the data set (3.99%). All preprocessing steps were 

conducted using EEGLAB (Delorme & Makeig, 2004) and the Amsterdam Decoding and Modeling 

toolbox (Fahrenfort, van Driel, van Gaal, & Olivers, 2018). 

 

EEG Analysis 

In order to use alpha power in our analyses, FieldTrip (Oostenveld et al., 2010) was used to 

decompose the raw EEG signal into frequency-specific power spectra. Frequency-specific power 

spectra were based on a Fast Fourier Transform (FFT) approach using a fixed (i.e., independent of 

frequency band) 500 ms moving Hanning window (step size = 8 ms), resulting in a frequency 

resolution of 2Hz (1/0.5 sec). As such, the FFT analysis resulted in the time-frequency bins for all 

even frequencies ranging from 2 to 30 Hz (i.e., 2 Hz, 4 Hz, 6 Hz … 30 Hz). We calculated changes in 

induced (non-phase locked) power for each frequency and time point. The study specifically focused 

on changes in induced power to ensure that stimulus specific phase-locked signals found in the raw 

EEG were not present in this signal, thus measuring qualitatively different task-related signals than 

those encoded in the phase-locked EEG. Induced power was computed by subtracting the condition-

specific average evoked response (ERP) waveform from each trial of that condition (cue-position and 

cue-type) prior to computing the signal‟s power. This method effectively subtracts out the phase-

locked part of the signal from every single trial, leaving only stimulus induced power fluctuations of 

signals that are plausibly already ongoing (hence non-phase locked) when the stimulus appeared. 

Induced power signals that are computed by subtracting out ERPs prior to time-frequency 

decomposition have (by algorithmic logic), a different ontology from signals contained in the phase 

locked, raw EEG. As such, any difference in classification performance between raw EEG and power-

based analyses likely reflect expressions from distinct cortical mechanisms. Indeed, evoked (phase-

locked) components such as the N2pc are not present in the induced signal, whereas induced signals 

are often thought to reflect endogenous process that are modulated, but not initiated by external 

stimulation or task instruction (e.g. David, Kilner, & Friston, 2006; Hosseini, Bell, Wang, & Simpson, 

2015). The subtraction procedure that was used to obtain induced signals was applied separately to 
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training and testing data in each fold, computing condition-specific ERPs for every training and every 

testing set, as to prevent the ERP subtraction method from inadvertently introducing commonalities 

into the entire dataset that could drive above-chance decoding across training and testing. Although it 

would strictly be sufficient to apply this procedure to the training data only, we chose to apply it to the 

testing set too, eradicating any remnants of phase-locked activity. However, because the test data did 

not have enough trials to allow the computation of a sufficiently clean ERP, we fitted a spline through 

test-set ERPs to remove high-frequency noise prior to subtracting them from the single trials in the 

testing set.  

All analyses were multivariate, either applied to the raw EEG or to the time-frequency 

decomposed induced signal of the EEG. We first used backward decoding models (BDM) to infer 

whether we could predict the cue location based on the distributed EEG patterns. Next, we applied 

forward modeling techniques (FEM) to determine whether the underlying multivariate signal 

contained continuous tuning characteristics, and whether these differed for contingent and non-

contingent. All BDM and FEM analyses were conducted using the Amsterdam Decoding and 

Modeling Toolbox (ADAM, Amsterdam, the Netherlands, Fahrenfort et al., 2018), which uses 

EEGLAB as input format and internally uses FieldTrip to perform time-frequency analysis.  

 

Backward Decoding Model (BDM) 

A backward decoding model was used to predict at which of the eight possible locations the cue was 

presented, based on the distribution of EEG activity (raw EEG and time-frequency power distributions 

- alpha). The underlying logic of this analysis is that if a trained classifier can predict with above-

chance classification accuracy where the cue was presented, then it follows that location specific 

information is present in the distributed EEG patterns.  

In order to conduct the BDM analyses on the data, a number of steps were taken to ensure the 

validity of the model. First, the trial order was randomized offline for every subject, to prevent order 

effects from affecting classifier performance in any way. Next, each subject‟s individual dataset was 

analyzed using a 10-fold cross-validation training-testing scheme. In this scheme, the data was 

segmented into 10 equally sized folds (each fold containing a near-equal number of trials, with equal 
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distributions of the eight cue positions across the folds). A linear discriminant classifier was trained on 

90% of the data (9 of the 10 folds), learning to discriminate between the different stimulus classes 

(i.e., the eight possible cue locations) separately for each of the two cue types. The validity of the 

trained classifier was tested on the left-out 10% of the data (the remaining fold); a procedure which 

was repeated ten times, such that all data was tested once without ever using the same data for training 

and for testing. Separate decoding analyses were conducted using 1) the distributed amplitudes of the 

raw EEG signal over each electrode and time point and 2) the induced power of decomposed 

frequency information at each electrode and time point. Using 20 electrodes thus resulted in 20 

features for eight stimulus classes (eight cue locations), classified in two conditions (contingent and 

non-contingent cues). Rather than using the average proportion of correctly classified stimulus 

categories as a performance measure (e.g. Fahrenfort, Leeuwen, Olivers, & Hogendoorn, 2017), the 

BDM analyses used a slightly more sensitive performance measure by assessing the area under the 

curve (AUC; Hand & Till, 2001)  of a Receiver-Operator Characteristic (ROC) that plots the 

cumulative probabilities that the classifier assigns to instances coming from the same class (i.e. the 

correct cue location) against the cumulative probabilities that the instance is classified as being from a 

different class (i.e. one of incorrect cue locations). As more than two classes (i.e. the cue location) 

were used, AUC was defined as the average AUC of all pairwise comparisons between classes. Using 

AUC as a performance measure is more sensitive than using decoding accuracy as it uses single trial 

confidence scores (i.e. the distances from the decision boundary) to compute performance, rather than 

averaging the performance on a set of binary classifier decisions. AUC typically runs from 0.5 (chance 

performance) to 1 (perfect performance). 

 

Forward Encoding Models (FEMs) 

Compared to BDMs, forward encoding models (FEMs; Brouwer & Heeger, 2009) take the opposite 

approach by establishing the continuous relationship between a stimulus parameter (cue position in 

this case) and multivariate neural patterns. This relationship is expressed in a single so-called Channel 

Tuning Function (CTF, loosely reminiscent of tuning properties of single neurons), which together 

with regression weights obtained during model creation allows one to reconstruct neural patterns for 
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stimulus parameters that were never used to create the model (Fahrenfort et al., 2017; Brouwer & 

Heeger, 2009). Hence, the term „forward model‟ reflects the fact that one can go from the stimulus 

parameter space to predict neural activity (and vice versa). 

During FEM model fitting, a similar 10-fold procedure is used as during backward decoding 

analyses, but using a different procedure. First, a basis set is created for each of eight hypothetical 

channels reflecting cue position, and which describe the assumed (hypothetical) relationship between 

neural activity and the eight cue positions on the screen. The nomenclature “channels” here should not 

be confused with MEG or EEG sensors, EEG sensors are referred to as electrodes in the current 

manuscript. We used a Gaussian shaped basis set, which was created using a standard Gaussian 

function with an amplitude of 1 and a sigma of 1. Next, linear regression-based weight estimation for 

each of the hypothetical location channels was performed separately for each of the 20 features, 

specifying the one-to-one and invertible relationship between a particular cue position and the 

distributed multivariate neural response in the training set. Next, these weights were multiplied with 

trials in the testing set to produce the estimated channel responses for each trial in the testing set. This 

procedure was repeated for each of the 10 testing folds so that channel responses were derived once 

for each trial in all folds. Subsequently, the trial-based channel responses were averaged across trials 

in the testing set, separately for trials reflecting each of the eight different cue locations. The averaged 

channel responses in combination with the derived channel weights describe the validated and 

inversible relationship between attended cue location and the multivariate EEG response. In a final 

step, the eight estimated channel responses were aligned to a common center such that all eight 

channel responses were similarly centered. This step was conducted separately for each of the two cue 

conditions and was repeated for each time point, resulting in a CTF-over-time. The full procedure has 

been described at length in a number of other papers, both in mathematical terms (Brouwer & Heeger, 

2009; Foster et al., 2016; Garcia et al., 2013; Samaha et al., 2016) as well as using more verbal and 

visual descriptions (Fahrenfort et al., 2017; Foster, Sutterer, et al., 2017). As in the BDM analyses, 

separate FEM analyses were conducted using the distributed raw EEG signal and the induced power 

spectra as input.  
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Event-Related Potentials 

To provide additional context to the interpretation of any effects observed in our phase-locked 

encoding and decoding analyses, we further established the „traditional‟ cue evoked event-related 

potentials (ERPs) from 100 ms pre-cue until 1000 ms post-cue, separately for contingent and non-

contingent cues. Of particular interest were peaks commonly associated with the early neural response 

to visual stimulation, such as the P1; an attention modulated positive deflection in originating in the 

contralateral hemisphere and occurring approximately 100 ms after the onset of a visual event (e.g. 

Luck et al., 1990). In addition, the aforementioned N2pc will be investigated as well. ERPs were 

derived from the averaged lateralized (contra- vs ipsilateral) responses using electrodes PO7 and PO8. 

 

Results 

Behavioral Results 

Reaction Times: Only trials with correct responses were used in the reaction time analyses (5.23% 

discarded). Furthermore, for all analyses, trials with response times shorter than 200 ms as well as 

reaction times that were two standard deviations above the subject‟s conditional means were removed 

(4.11% discarded). To investigate the effect of cue contingency on attentional allocation to the target 

presented in the search array, we first calculated the mean reaction times per condition for trials with a 

short SOA (150 ms). The time course in this condition best reflects the classic studies on contingent 

capture and allows us to draw conclusions about cue-induced attentional effects on target selection. 

Figure 2 (top panels) shows the mean reaction times and accuracy scores to targets preceded by valid 

and invalid cues, separately for contingent and non-contingent trials. A repeated-measures ANOVA on 

reaction times with these factors showed a main effect of validity, indicating that participants were 

faster on trials in which the location of the cue matched the location of the target, compared to when 

cue and target were presented at different locations (F(1,28) = 22.182, p < .001, ηp
2
 = .442). No main 

effect of contingency was observed (F<1), but as expected, a clear interaction between contingency 

and validity was observed (F(1,28) = 6.889, p = .014, ηp
2
 = .197), with post-hoc t-tests showing that 

the validity effect was larger on contingent trials (∆ 24 ms; t(28) = 5.211, p < .001) as compared to 

non-contingent trials (∆ 8 ms; t(28) = 1.836, p =.077).  
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A similar analysis was conducted for trials with a longer SOA (650 ms) in order to see if any 

of the cue-induced capture effects lingered such that it would influence the reaction times to targets 

presented with a larger temporal separation from the cue. No main effect of validity was observed 

(F(1,28) = 2.826, p =.104, ηp
2
 = .092), suggesting that some of the attentional effects may have 

dissipated by the time the target was presented. Furthermore, a significant effect of contingency was 

observed (F(1,28) = 4.292, p =.048, ηp
2
 = .133), with faster reaction times for contingent compared to 

non-contingent trials (see Figure 2 for means). Finally, similar to the analysis on the short SOA data, 

an interaction between contingency and validity (F(1,28) = 11.528, p = .002, ηp
2
 = .292) was found. 

Post-hoc testing showed that this interaction was driven by the presence of a validity effect on 

contingent trials (∆ 8 ms; t(28) = 3.604, p =.001) that was completely absent on non-contingent trials 

(∆ -2 ms; t(28) = 0.607, p = .549).  

 

Accuracy:  Overall accuracy was relatively high: 94.60% correct. An ANOVA on the mean accuracy 

scores with contingency and validity as factors for the short SOA trials (150 ms) showed a main effect 

of validity, indicating that participants were more accurate on trials with validly cued targets as 

compared to trials with invalidly cued targets (F(1,28) = 33.795, p <.001, ηp
2
 = .547; See Figure 2 – 

bottom panels for accuracy scores). A main effect of contingency was observed, indicating that 

participants responded less accurately on trials in which the target was preceded by a contingent 

compared to a non-contingent cue (F(1,28) = 8.976, p = .006, ηp
2
 = .243). A significant interaction 

between contingency and validity was observed (F(1,28) = 4.212, p <.001, ηp
2
 = .547), showing larger 

differences in accuracy between valid and invalid trials for contingent (3.27%; t(28) = 5.126, p < .001) 

as compared to non-contingent trials (2.0%; t(28) = 4.639, p <.001). A similar ANOVA on the trials 

with long SOAs (650 ms) showed only a significant main effect of validity, indicating that participants 

were overall more accurate on trials with validly cued targets as compared to invalidly cued targets 

(F(1,28) = 6.748, p = .015, ηp
2
 = .194). No main effect of contingency (F(1,28) = 1.613, p = .215, ηp

2
 = 

.054), nor an interaction between the two factors was observed (F(1,28) = 1.907, p = .178, ηp
2
 = .064). 

Accuracy results need to be interpreted tentatively as the absence of hypothesized effects may be 

masked or distorted by a ceiling effect due to the overall high accuracy of most of the subjects. 
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Figure 2. Mean reaction times (top) and accuracy scores (bottom) for the different experimental conditions. 

Separate plots are shown for trials with short (left) and long (right) SOAs. Error bars reflect the 95% confidence 

interval (Cousineau, 2005; Morey, 2008). 

 

EEG Results 

Raw EEG analysis (BDM): To first establish whether we could find early effects of attentional capture 

(i.e., the effects in the N2pc domain) and to gauge the extent to which these effects are shaped by cue 

contingency, we applied a backward decoding analysis to determine cue position using the raw EEG 

signal (similar to Fahrenfort et al., 2017b). Figure 3 shows classification accuracy (i.e. decoding 

accuracy as indexed by the ROC‟s area under the curve) over time, indicating the extent to which the 

cue location could be predicted based on the multivariate raw EEG patterns. Classification accuracy 

(AUC) was tested against chance level (50%), separately for trials containing contingent (red) and 

non-contingent (green) cues. T-tests against chance were conducted for every time sample in the 

epoched data, correcting for multiple comparisons using 1000-iteration cluster-based permutation tests 

(see Maris & Oostenveld, 2007). As can be observed from Figure 3, both contingent (red) and non-

contingent (green) cues yielded significant above-chance decoding performance (cluster-based p < .05, 

two-sided) emerging in the same time window as classical N2pc effects peaking between 200-250 ms 
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after cue onset. To directly compare whether classification performance differed for contingent and 

non-contingent cues, classification performance for both cue types were tested against each other 

using paired samples t-tests. Again, these tests were conducted for each time point in the cue target 

interval, using cluster-based permutation testing to mitigate the multiple comparisons problem. Figure 

3 shows the difference between classification performance for contingent and non-contingent trials 

(grey line / right axis; i.e., contingent – non-contingent) and clear significant differences for contingent 

compared to non-contingent cues can be observed in three consecutive temporal intervals (smallest 

cluster-based p < .001, one-sided), starting shortly after cue onset (156 ms after cue onset) and ending 

well before the target appeared (420 ms after cue onset). Note that the peak difference of the 

difference wave is consistent with the time of maximum classification accuracy for both contingent 

and non-contingent cues. 

 

 

Figure 3. Classification accuracy using BDM, expressed as Area Under the Curve (AUC) for contingent (red) 

and non-contingent (green) trials as well as their difference (grey), based on the raw EEG signal. Colored bars on 

the x-axis show the intervals where classification performance is above chance level (50.0%). Significant 
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differences between contingent and non-contingent classification performance can be observed in multiple 

clusters ranging from 156 – 420 ms after cue onset (Tcue = 0). 

 

Time-Frequency analysis (BDM): We applied a backward decoding analysis to the time-frequency 

data, aimed at investigating to what extent the multivariate distribution of the EEG‟s power spectra 

could be used to predict at which location the contingent and non-contingent cues were presented. Past 

work has shown that this approach can track sustained orienting of covert attention, thereby providing 

an important complement to the analysis of the phase-locked EEG activity that appears to be most 

sensitive to attention effects occurring early after visual stimulation. Crucially, although separate 

multivariate analyses were conducted using the distribution of activity in the raw EEG on one hand 

and the distribution of power spectra amplitudes on the other hand, both measures were derived from 

the same data set and the same interval was tested for differential effects of the two cue types.  
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A first step in using distributed power spectra to decode the cue locations consisted of 

determining which neural oscillatory frequencies could be effectively used to decode this information. 

Therefore, a BDM analysis was conducted on all frequencies ranging from 2 – 30 Hz (in steps of 2 

Hz; see Methods), separately for trials with contingent and with non-contingent cues. Figure 4 shows 

the over time performance of the classifier averaged over cue location, based on the induced power 

spectra. Note that the induced signal does not contain any of the phase-locked evoked responses that 

are present in the raw EEG data (see Methods for details). As expected, the highest decoding accuracy 

was observed in the alpha-band range for both contingent (Figure 4A) and non-contingent (Figure 4B) 

cues (Foster et al., 2016). As such, we used this frequency band (8-12 Hz) to further examine whether 

we could decode the location of the different cue types based on time-frequency information.   

 

Figure 4. Classifier performance based on decomposed frequency power for frequencies ranging from 2 – 30 Hz 

(in steps of 2 Hz) for A. contingent and B. non-contingent (B) trials. Saturated values are cluster-corrected using 

cluster-based permutation testing (p < .05). C. Classifier accuracy over time based on 8-12Hz alpha-band power 

independently for contingent and non-contingent data. Green and red bars at the x-axis indicate the regions of 

above-chance decoding accuracy. The grey bar indicates the difference in decoding accuracy between contingent 

and non-contingent cues (scaled on the grey axis on the right). The difference between contingent and non-

contingent is significant in an interval ranging from 596 – 860 ms after cue onset. 

 

Figure 4c shows the above-chance classifier accuracy for contingent and non-contingent cues based on 

the distribution of alpha power over the scalp (red and green lines). Results showed that both 

contingent and non-contingent trials yielded above-chance classifier performance starting at 
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approximately 250 ms post-cue and extending well past target onset (Ttarget = 650 ms). Crucially, the 

difference between contingent and non-contingent trials, as indicated by the grey line, was observed to 

be significant only in the later stages of the trial during an interval ranging from 596 ms to 860 ms 

post cue (cluster-based p = .036, one-sided).  

Thus, these results show that the location of both the contingent as well as the non-contingent 

cues could effectively be decoded from the distributed pattern of alpha power over an extended period 

of time following cue onset, with contingent cues yielding significantly higher decoding accuracy later 

in the trial (shortly before target onset). When directly comparing the decoding accuracy based on 

alpha power for contingent and non-contingent cues, it appears that location tuning declined more 

quickly for non-contingent cues than for contingent cues. To further investigate whether a more 

specific model could bring out these differences between the two conditions we applied an FEM 

model to the raw EEG and the time-frequency data. 

 

Raw EEG Analysis (FEM): The early above-chance classifier performance for contingent and non-

contingent cue locations was taken as an incentive to investigate whether a forward encoding model 

(FEM) could be used to create location-selective channel tuning functions (CTFs) that describe the 

continuous relationship between multivariate patterns of EEG activity and cue location, separately for 

contingent and non-contingent cues. As raw EEG is used as input for the forward model, we expect 

any differences between contingent and non-contingent to arise as early effects in the channel tuning 

response over time, reflecting early and automatic effects of contingent capture. 

A forward encoding model that describes the relationship between the multivariate EEG 

patterns and cue location (separately for cue type) was constructed (see Methods). Figure 5A shows 

how the CTFs for contingent and non-contingent cues develop in a 1000 ms time window following 

cue onset. Significance testing of the CTFs was conducted by testing the slopes of the CTF function 

against 0 for each time point, again corrected for multiple comparisons using cluster-based 

permutation testing (p < .05). The slope of each CTF was estimated using linear regression after 

collapsing across channels that were equidistant from the channel tuned to the cued location (i.e., 

channels -4 and 4, channels -3 and 3, etc. as reported in Figure 5). Significant periods in the 
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developing CTFs are indicated by black bars at the bottom of the plots. As can be seen for both 

contingent and non-contingent cues, CTFs reach significance shortly after cue onset (approximately 

after 150 ms), dovetailing the observed time course of the BDM results using the raw EEG data. 

 

 

Figure 5. A. Development of channel tuning functions from cue onset (Tcue = 0) based on raw EEG data. 

Significance is indicated by black bars on the x-axes. B. Contingent and non-contingent slope for the early time 

interval (156-420 ms after cue onset). C. Contingent and Non-Contingent slope for the late time window (596 – 

860 ms after cue onset). 

 

To investigate whether the created forward encoding model describes a continuous relation between 

cue location and early and late effects of attentional capture, we compared the strength (i.e. the slopes) 

of contingent and non-contingent cue-induced tuning functions for the early and late intervals derived 
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from the BDM analysis (i.e. early: 156-420 and late: 596-860). Figure 5b and 5c show the channel 

tuning functions for contingent and non-contingent cues for these intervals. We investigated the 

differences in the CTFs for contingent and non-contingent cues by directly comparing the slopes of 

each of the obtained functions to each other. In line with the BDM decoding results, the slopes of the 

evoked CTFs were statistically different for contingent and non-contingent cues in the early interval. 

A paired samples t-test showed that contingent cues resulted in steeper slopes as compared to non-

contingent cues, showing that CTFs were more strongly tuned to the location of contingent compared 

non-contingent cues (t(28) = 5.990, p < .001). No such differences were observed in the late interval 

(t(28) = 0.852, p = .401), mirroring the results of the raw EEG BDM analyses. Thus, early effects of 

attentional capture were at modulated by the match between cue color and attentional set. 

 

Time-Frequency analysis (FEM):  

We subsequently investigated whether a direct and continuous relationship could be established 

between cue location and the distributed pattern of alpha activity over the scalp. Similar to FEMs 

based on raw EEG data, and utilizing the same data set, channel tuning functions were created 

separately for contingent and non-contingent cues. As shown in Figure 6A, a strong relationship 

between cue location and induced alpha power was observed yielding robust channel tuning functions 

for both contingent and non-contingent cues.  
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Figure 6. A. Development of channel tuning functions from cue onset based on alpha-band power. Significance 

is indicated by black bars on the x-axes. B. Contingent and non-contingent slope for the early time interval (156-

420 ms post-cue). C. Contingent and Non-Contingent slope for the late time window (596 – 860 ms post-cue). 

 

Following the results obtained in the BDM analyses and the procedure conducted for the FEM 

analysis on the raw data, we distinguished between early (156 – 420 ms post-cue) and late (596 – 860 

ms post cue) intervals, to expose temporal differences between the neural response to contingent and 

non-contingent cues, as encoded in the distributed alpha power. Contrary to the raw EEG encoding 

results, no difference in slope was observed for the early interval (Figure 6B; t(28) = 0.459, p= .650), 

suggesting that alpha power did not encode any differences in early, automatic attentional modulation 

of the cues. As expected, a significant slope difference between contingent and non-contingent cues 

was observed in the late interval (t(28) = 2.970, p = .006), with contingent cues yielding a steeper 

slope as compared to non-contingent cues. The results presented in Figure 6b further suggest that there 

is no difference between the slopes evoked by non-contingent cues in the early compared to the late 

time interval. However, this lack of an effect is caused by the observation that alpha does not yield 
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strong CTFs early on in the selected time window (> 156 ms), resulting in equally strong CTFs 

compared to the late time window (the time windows being defined by the BDM analyses and not by 

the observations presented in Figure 6a). 

Analyses of raw EEG and alpha power revealed distinct time courses for the differences 

between contingent and non-contingent cue conditions. When using the raw EEG signal in the FEM 

analyses, significant differences between the two cue types can be observed in the early interval (156 – 

420 ms after cue onset), but these differences are no longer present during the late interval (596 – 860 

after cue onset). The opposite time course was observed with alpha-band power, where reliable 

differences were observed in the late time interval but not during the early time window. To quantify 

this inverse pattern, a repeated measure ANOVA was conducted on the individual slope values with 

contingency (contingent, non-contingent), time interval (early, late) and signal (raw EEG, alpha 

power). As main effects have already been established, the current results focus solely on the 

interactions between the different factors. First, the observed early/late reversal for raw EEG/alpha 

power is supported by a significant three-way interaction between contingency, time interval and 

signal type (F(1,28) = 5.791, p = .023, ηp
2
 = .171). This interaction is illustrated in Figure 7 in which 

the difference in CTF slope between contingent and non-contingent (contingent – non-contingent) is 

plotted as a function of time interval and signal type. Furthermore, a two-way interaction was 

observed between signal type and time interval, showing that raw EEG yielded steeper slopes in the 

early time interval as compared to the late time interval, whereas alpha-power resulted in the reversed 

pattern with steeper slopes in the late, compared to the early time interval (F(1,28) = 31.629, p <.001, 

ηp
2
 = .530). These results imply that raw EEG and alpha power appear to track distinct cortical 

mechanisms related to the contingency between cue and target. No other interactions were observed. 
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Figure 7. The difference in CTF slopes for contingent and non-contingent cues. A clear interaction between 

signal type and interval can be observed. Error bars reflect the 95% confidence interval around the mean 

(Cousineau, 2005; Moray, 2008). 

 

To ensure that the observed encoding effects are based on a spatially graded profile for each condition 

(cue location) and to confirm that these effects were not driven by a subset of the cue locations, 

quadrants or hemifields, we plotted the averaged channel response for each condition separately for 

early Raw EEG (Figure 8a) and late alpha power (Figure 8b). As can be seen in Figure 8, all locations 

showed a distinct location-specific CTF in both the raw EEG and the alpha power data, providing 

further evidence that the observed results (i.e. the difference between contingent and non-contingent 

cues) in this study indeed reflect location-specific effects of spatial attention. 
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Figure 8. Channel responses for individual conditions showing that the overall CTF is not driven by a subset of 

lateralized locations, but is based on a full spatial profile in which each location yields a distinct CTF. A) 

location-based channel responses for early Raw EEG. b) Location-based channel responses for alpha-band 

power. 
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Event-related potentials 

To place the observed BDM and FEM effects in a broader and more traditional context, cue evoked 

event-related potentials were extracted separately for contingent and non-contingent cues. In 

particular, we focused on early components of the visually evoked ERP that are known to be 

modulated by visual attention, such as the enhancement of the contralateral P1 component, as well as 

the N2pc component. Modulation of the N2pc is of particular interest as this component has been 

commonly associated with contingent attentional capture. 

 Similar to the multivariate analyses, the event-related responses to contingent and non-

contingent cues were calculated for each participant and subsequently averaged in a „grand-average‟ 

ERP response as plotted in Figure 9. Again, t-tests against zero (baseline) were conducted for every 

time sample in the evoked potentials, correcting for multiple comparisons using 1000-iteration cluster-

based permutation tests (alpha = .05). Direct comparison between the two cue conditions was likewise 

conducted using t-tests, testing differences between equal time samples in the two evoked potentials.  

 As can be seen in Figure 9, results of the ERP analyses showed that both contingent and non-

contingent cues elicited significant (above baseline) contralateral (compared to ipsilateral) 

enhancement of the P1 components. The modulated P1 evoked by contingent cues showed a 

significant positive deflection ranging from 92 ms until 156 ms after cue onset, with a maximum 

amplitude at 124 ms after cue onset (cluster-based p = .009). Similarly, the non-contingent cue showed 

above baseline activity in the 100 - 148 ms time window following cue onset, with its peak amplitude 

measured at 124 ms following cue presentation (cluster-based p < .009). However, a direct comparison 

between the contralateral enhancement of the P1 evoked by contingent and non-contingent cues did 

not yield any significant differences, suggesting that both cue types elicited a similar neural response 

at this moment of processing.  

In a similar fashion, both contingent and non-contingent cues evoked robust N2pc 

components, with the contingent cue showing a significant negative deflection ranging from 172 – 268 

ms after cue onset, with the peak of the N2pc observed at 220 ms following cue onset (cluster-based p 

< .001). Non-contingent cues similarly evoked an N2pc observed in the 164 – 284 ms time window 
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following cue onset, with the peak observed at 236 ms (cluster-based p < .001). However, in contrast 

to the decoding results no significant differences were observed between the contingent and non-

contingent cue condition for these components. Do note that a one-tailed significant difference could 

be observed for the N2pc component, showing an increased amplitude for contingent, compared to 

non-contingent trials (time range: 180 to 228, cluster-based p = .027; not reported in Figure 9). This 

analysis suggest that the decoding results are more sensitive indicators of the capture effects due to the 

multivariate nature of the ERP signal. 

 

Fig 9. Event related potentials for contingent and non-contingent cues (Tcue. = 0). Components that significantly 

differ from baseline (0) are indicated by the colored bars on the x-axes. Note that no difference between the two 

conditions was observed. 
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Discussion 

The current study aimed to investigate the spatiotemporal properties of contingent capture. To this 

end, the full spatiotemporal profile of contingent capture was constructed via multivariate analysis of 

ongoing EEG activity. This approach allowed us to examine attentional allocation in both early and 

late temporal intervals following the onset of contingent and non-contingent cues. Modulations of two 

well-known neurophysiological measures of attention were utilized to establish a direct relationship 

between attentional processes and neural activity: raw EEG and alpha-power.  

Behaviorally, the data mirrored classic results observed in studies that provide support for 

contingent capture (Egeth & Yantis, 1997; Folk et al., 1992; Folk & Remington, 1998, 2006). 

Reaction times to the target were influenced by the nature and location of the preceding cue, such that 

contingent cues exerted a strong influence on reaction times to the target, with reaction times 

depending on whether they were presented at the location of the target (fast RTs) or elsewhere in the 

display (slow RTs). This behavioral effect was strongly attenuated for non-contingent cues to the point 

where non-contingent cues did not produce a reliable RT difference between cues at the target location 

and cues elsewhere in the display.  EEG analyses based on the raw EEG signal provided a clear 

difference between patterns of neural activity for contingent compared to non-contingent cues, in the 

early time interval, suggesting that more attentional resources were allocated to the contingent cue.  

Furthermore, during the late interval a similar difference between contingent and non-contingent cues 

was observed as measured using alpha power. Surprisingly, the non-contingent cues elicited above-

chance decoding accuracy in this late time interval providing compelling evidence that this is not an 

effect that can be attributed to simple stimulus-driven feedforward processing, both given the late 

occurrence and the nature (alpha, which is indicative of feedback rather than feedforward; e.g. 

Doesburg et al., 2016) of the effect. The occurrence of such a late effect of non-contingent capture is 

novel and has to our knowledge not been previously reported in the literature. However, whether this 

effect reflects non-contingent capture itself, or is an unintended consequence of capture cannot be 

fully resolved from the current experiment. 

Potential differences in the underlying neural mechanisms responsible for processing the 

contingent and non-contingent cues were assessed in two ways: First, following Fahrenfort and 
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colleagues (2017) and Myers and colleagues (2015), the multivariate distribution of peak values in the 

raw EEG signal was used to show early and automatic effects of contingent capture. In addition, 

following Foster and colleagues (2017, 2016), distributed alpha power was used to test the allocation 

of spatial attention when faced with contingent and non-contingent cues. Backward decoding models 

were utilized to derive the location of the different cues based on the distributed neural EEG signal, 

whereas forward encoding models were used to establish a direct and continuous relationship between 

observed systematic EEG patterns and cue location, separately for each cue type.  

By capitalizing on qualitatively different neurophysiological markers in the EEG signal (i.e. 

the raw EEG data and alpha power), the current study argues against the extreme version of both goal-

driven and stimulus-driven models of attentional capture. The results of the current study distinguish 

between two neural signals known to track the deployment of covert attention. In line with previous 

work, the multivariate analyses based on the raw EEG (BDM and FEM) showed that the influence of 

attention emerged shortly after cue onset, but showed its strongest effect in the multivariate EEG 

patterns around 200-250 ms post cue. This peak time interval matches that of the well-established 

N2pc component (Eimer, 1996; Luck & Hillyard, 1994) and has repeatedly been linked to general 

attentional processes, such as identifying and localizing potential target stimuli embedded in an array 

of non-targets (Eimer, 1996; Hickey, McDonald, & Theeuwes, 2006; Luck & Hillyard, 1994; Mazza, 

Turatto, & Caramazza, 2009) and more specifically to contingent capture (Grubert et al., 2017; Eimer, 

1996; but see Hickey et al., 2006 for a bottom-up account). Nonetheless, differences in decoding 

between contingent and non-contingent cues can be observed as early as 156 ms after cue onset, 

preceding the classic N2pc time course which shows its earliest effects around 180 ms after stimulus 

onset. The most likely explanation for this effect is that the N2pc signal is modulated by an earlier 

bottom-up signal, evoked by the presentation of the singleton cue stimulus. Therefore, the observed 

above-chance decoding accuracy is hypothesized to be generated by the same evoked neural activity 

that is responsible for generation of the N2pc, but precedes it as it is modulated by an earlier bottom 

up signal. This finding has been substantiated by a recent study by Fahrenfort et al. (2017) in which a 

forward encoding model (based on raw EEG) was used to describe the continuous relationship 

between different target locations and systematic fluctuations in neural patterns that arose in the N2pc 
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time window. The current results dovetail those by Fahrenfort and colleagues, by showing a similar 

continuous relationship between potential cue location and systematic fluctuations in the distribution 

of the raw EEG peaks in the N2pc time window. However, contrary to Fahrenfort et al., the current 

results not only showed this relationship for contingent trials, but a similar albeit weaker observation 

was observed for non-contingent cues. This latter finding is most likely caused by properties of the 

experimental design in which the used cues are the only colored and salient stimuli in the display 

therefore strongly capturing attention in a bottom-up fashion. Furthermore, as these cue displays were 

asymmetrical (due to the presented color cue), it is likely that such displays evoke lateralized early 

visual responses (Clark et al., 1994), which could contribute to the above chance decoding accuracy 

for raw EEG based analyses. 

The results of the FEM analysis focused on alpha power converged with those from the BDM 

analysis. Steeper CTF slopes were observed for contingent as compared to non-contingent cues in the 

late time window defined in the alpha-based BDM analysis. This observation contrasts with a recent 

study by Harris and colleagues (Harris et al., 2017) who showed that alpha-band oscillations were 

most strongly associated with attentional processes related to contingent cues, but not to non-

contingent cues, whereas theta band activity (4-8 Hz) was associated with capture of both cue types, 

with stronger effects for contingent cues. However, Harris and colleagues investigated alpha and theta 

oscillatory activity as a function of early attentional capture, focusing on early effects of attention 

following cue presentation. In our analysis, relatively early (~250 ms after cue onset) decoding of cue 

position was observed in alpha activity, but differences in attention to contingent and non-contingent 

cues were not observed until a later time interval which coincided with the onset of the target stimulus.  

The observed late effects in the difference between neural activity underlying processing of 

contingent and non-contingent cues may reflect slower disengagement from contingent relative to non-

contingent cue locations. As argued by Theeuwes et al. (Theeuwes, Atchley, & Kramer, 2000) 

disengagement from the cue may be fast when the cue and the target do not share the same defining 

properties, while disengagement is slow when cue and target have the same defining features (see also 

Belopolsky et al., 2010; Fukuda & Vogel, 2009; Grubert et al., 2017). Theeuwes et al., (2000) showed 
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that it takes only about 100 to 150 ms to disengage attention from a cue that does not match the target 

feature one is searching for.  

An alternative and speculative interpretation of the observed late effects in the alpha-based 

analyses follows recent literature that suggests a link between alpha power and endogenous processes 

(e.g. David, Kilner, & Friston, 2006; Hosseini, Bell, Wang, & Simpson, 2015). As such, the observed 

results tentatively suggest a role for slower, voluntary endogenous spatial attentional control that is 

possibly initiated by early effects of attentional capture. For example, the observed late effects in the 

difference between neural activity underlying the processing of contingent and non-contingent cues 

could potentially reflect the effort necessary to voluntarily disengage from an initially captured, but 

invalid cue location, with more attentional control being required from a location that contained a 

contingent cue, as compared to locations containing a non-contingent cue. Perhaps this endogenous 

signal can be more easily “turned off” when the presented cue has a low target-similarity as in the case 

of non-contingent cues. That is, observers can rapidly re-allocate spatial attentional resources once it is 

clear that the attended location does not contain the target. While this is a speculative interpretation of 

the late alpha based results, the current data suggests that disengaging attention from a target with high 

target-similarity appears to take more time and effort such that endogenous spatial attention to a 

contingent may still linger at the cued location when the target is presented (see also, Belopolsky et 

al., 2010; Grubert et al., 2017). 

Nonetheless, while a role of endogenous attention seems appropriate around the moment of 

target onset, above-chance decoding accuracy based on alpha tuning was observed for both contingent 

and non-contingent cues starting around 250 ms post cue. An interpretation in terms of voluntary 

attention seems problematic for this result, as it would not be beneficial to voluntarily attend to the 

largely uninformative cues (12.5% valid). As such, given the early onset of alpha-based modulations 

to both contingent and non-contingent cues, it appears that modulations of alpha activity may also 

reflect processes that are directly linked to early, involuntary bottom-up capture. The discrepancy 

between the current results and those observed by Harris and colleagues (Harris et al., 2017) is not 

immediately clear, but may be attributable to different types of analyses used to study spatial attention. 
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Interestingly, the observed event-related potentials do not completely fall in line with the results 

obtained using the multivariate raw EEG patterns. While a strong contralaterally enhanced P1 was 

observed following both contingent and non-contingent cues, no difference in the enhanced P1 

magnitude was observed between these two conditions, as opposed to the presented multivariate raw 

EEG based analyses. However, this lack of a conditional effect is not out of line with earlier work that 

strongly suggests that the first ERP component modulated by contingent capture is the slightly later 

N2pc component (e.g. Eimer, 1996; Eimer & Kiss, 2008; Grubert et al., 2017). Similarly, the current 

study did not yield robust differences in N2pc amplitude between contingent and non-contingent cues, 

but a trend was observed in the expected direction, as indicated by a significant one-tailed t-test. 

Interestingly, whereas the N2pc effects are relatively weak, the decoding analysis based on the raw 

EEG data are fairly strong. Therefore, the current results do not only reflect on the nature of 

contingent capture, but also provide a strong case for multivariate EEG analysis, perhaps in 

combination with ERPs, as the more robust means of analyzing the time course of neuro-cognitive 

processes. 

While our data show that contingent cues elicited stronger attentional capture, it may be premature 

to refer to this as an instance of “goal-driven” attention, because target color was held constant for 

each observer. Under these conditions, it has been established that selection biases will linger for the 

selected color even when the current goals of the observer have changed. This lingering effect is 

sometimes referred to as “selection history” (Awh et al., 2012), and it describes an interesting class of 

selection phenomena in which neither physical stimulus salience nor the current attentional goals of 

the observer can explain the selection bias (see also Theeuwes, 2018). A similar phenomenon can be 

observed in studies of value-driven capture showing that attention is involuntarily allocated to stimuli 

that are associated with obtaining a reward, even when the reward is no longer available and the value-

signaling stimulus is not the target, ruling out an explanation in terms of top-down effects (Anderson, 

2013; Anderson, Laurent, & Yantis, 2011).  

In sum, the current study shows that salient stimuli with features that either match or do not match 

a defining target feature evoke two consecutive but independent attentional signals. First, such stimuli 

elicit an „early‟ effect in which attention appears to be captured by all salient stimuli, but with a 
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stronger influence of attention for contingent compared to non-contingent stimuli. This early effect 

appears to function as input for a „late‟ attentional mechanism that is potentially endogenous in nature 

and can be switched off when the attended location does not contain the sought-after target stimulus 

(or a stimulus closely matching that target). In line with the current results, Hopfinger and West 

(2006) have suggested that bottom-up and top-down attention can operate concurrently and 

interactively, by showing distinct and overlapping effects of attention on information processing. The 

current study elaborates on this finding by showing that attentional capture draws upon multiple 

attentional mechanisms to shape target selection and identification. 
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