57 research outputs found

    Evaluating blood-brain barrier permeability in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage

    Get PDF
    BACKGROUND AND PURPOSE: Patients with SAH are at increased risk of delayed infarction. Early detection and treatment of delayed infarction remain challenging. We assessed blood-brain barrier permeability, measured as permeability surface area product, by using CTP in patients with SAH with delayed infarction. MATERIALS AND METHODS: We performed a retrospective study of patients with SAH with delayed infarction on follow-up NCCT. CTP was performed before the development of delayed infarction. CTP data were postprocessed into permeability surface area product, CBF, and MTT maps. Coregistration was performed to align the infarcted region on the follow-up NCCT with the corresponding location on the CTP maps obtained before infarction. Permeability surface area product, CBF, and MTT values were then obtained in the location of the subsequent infarction. The contralateral noninfarcted region was compared with the affected side in each patient. Wilcoxon signed rank tests were performed to determine statistical significance. Clinical data were collected at the time of CTP and at the time of follow-up NCCT. RESULTS: Twenty-one patients with SAH were included in the study. There was a statistically significant increase in permeability surface area product in the regions of subsequent infarction compared with the contralateral control regions (P \u3c .0001). However, CBF and MTT values were not significantly different in these 2 regions. Subsequent follow-up NCCT demonstrated new delayed infarction in all 21 patients, at which time 38% of patients had new focal neurologic deficits. CONCLUSIONS: Our study reveals a statistically significant increase in permeability surface area product preceding delayed infarction in patients with SAH. Further investigation of early permeability changes in SAH may provide new insights into the prediction of delayed infarction

    Cost-effectiveness of CT angiography and perfusion imaging for delayed cerebral ischemia and vasospasm in aneurysmal subarachnoid hemorrhage

    Get PDF
    BACKGROUND AND PURPOSE: Delayed cerebral ischemia and vasospasm are significant complications following SAH leading to cerebral infarction, functional disability, and death. In recent years, CTA and CTP have been used to increase the detection of delayed cerebral ischemia and vasospasm. Our aim was to perform comparative-effectiveness and cost-effectiveness analyses evaluating CTA and CTP for delayed cerebral ischemia and vasospasm in aneurysmal SAH from a health care payer perspective. MATERIALS AND METHODS: We developed a decision model comparing CTA and CTP with transcranial Doppler sonography for detection of vasospasm and delayed cerebral ischemia in SAH. The clinical pathways were based on the Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association (2012). Outcome health states represented mortality and morbidity according to functional outcomes. Input probabilities of symptoms and serial test results from CTA and CTP, transcranial Doppler ultrasound, and digital subtraction angiography were directly derived from an SAH cohort by using a multinomial logistic regression model. Expected benefits, measured as quality-adjusted life years, and costs, measured in 2012 US dollars, were calculated for each imaging strategy. Univariable, multivariable, and probabilistic sensitivity analyses were performed to determine the independent and combined effect of input parameter uncertainty. RESULTS: The transcranial Doppler ultrasound strategy yielded 13.62 quality-adjusted life years at a cost of 154,719.TheCTAandCTPstrategygenerated13.89qualityadjustedlifeyearsatacostof154,719. The CTA and CTP strategy generated 13.89 quality-adjusted life years at a cost of 147,097, resulting in a gain of 0.27 quality-adjusted life years and cost savings of $7622 over the transcranial Doppler ultrasound strategy. Univariable and multivariable sensitivity analyses indicated that results were robust to plausible input parameter uncertainty. Probabilistic sensitivity analysis results yielded 96.8% of iterations in the right lower quadrant, representing higher benefits and lower costs. CONCLUSIONS: Our model results suggest that CTA and CTP are the preferred imaging strategy in SAH, compared with transcranial Doppler ultrasound, leading to improved clinical outcomes and lower health care costs

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap

    Cost-effectiveness of CT angiography and perfusion imaging for delayed cerebral ischemia and vasospasm in aneurysmal subarachnoid hemorrhage

    Get PDF
    BACKGROUND AND PURPOSE: Delayed cerebral ischemia and vasospasm are significant complications following SAH leading to cerebral infarction, functional disability, and death. In recent years, CTA and CTP have been used to increase the detection of delayed cerebral ischemia and vasospasm. Our aim was to perform comparative-effectiveness and cost-effectiveness analyses evaluating CTA and CTP for delayed cerebral ischemia and vasospasm in aneurysmal SAH from a health care payer perspective. MATERIALS AND METHODS: We developed a decision model comparing CTA and CTP with transcranial Doppler sonography for detection of vasospasm and delayed cerebral ischemia in SAH. The clinical pathways were based on the "Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association" (2012). Outcome health states represented mortality and morbidity according to functional outcomes. Input probabilities of symptoms and serial test results from CTA and CTP, transcranial Doppler ultrasound, and digital subtraction angiography were directly derived from an SAH cohort by using a multinomial logistic regression model. Expected benefits, measured as quality-adjusted life years, and costs, measured in 2012 US dollars, were calculated for each imaging strategy. Univariable, multivariable, and probabilistic sensitivity analyses were performed to determine the independent and combined effect of input parameter uncertainty. RESULTS: The transcranial Doppler ultrasound strategy yielded 13.62 quality-adjusted life years at a cost of 154,719.TheCTAandCTPstrategygenerated13.89qualityadjustedlifeyearsatacostof154,719. The CTA and CTP strategy generated 13.89 quality-adjusted life years at a cost of 147,097, resulting in a gain of 0.27 quality-adjusted life years and cost savings of $7622 over the transcranial Doppler ultrasound strategy. Univariable and multivariable sensitivity analyses indicated that results were robust to plausible input parameter uncertainty. Probabilistic sensitivity analysis results yielded 96.8% of iterations in the right lower quadrant, representing higher benefits and lower costs. CONCLUSIONS: Our model results suggest that CTA and CTP are the preferred imaging strategy in SAH, compared with transcranial Doppler ultrasound, leading to improved clinical outcomes and lower health care costs

    Evaluating Permeability Surface-Area Product as a Measure of Blood-Brain Barrier Permeability in a Murine Model

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: Permeability surface-area product has been suggested as a marker for BBB permeability with potential applications in clinical care and research. However, few studies have demonstrated its correlation with actual quantitative measurements of BBB permeability. Our aim was to demonstrate the correlation of quantitative permeability surface-area product and BBB permeability in a murine model by histologic confirmation

    Multi-band Optical Variability of the TeV Blazar PG 1553+113 in 2019

    Full text link
    We report the flux and spectral variability of PG 1553+113 on intra-night (IDV) to short-term timescales using BVRI data collected over 91 nights from 28 February to 8 November 2019 employing ten optical telescopes: three in Bulgaria, two each in India and Serbia, and one each in Greece, Georgia, and Latvia. We monitored the blazar quasi-simultaneously for 16 nights in the V and R bands and 8 nights in the V, R, I bands and examined the light curves (LCs) for intra-day flux and colour variations using two powerful tests: the power-enhanced F-test and the nested ANOVA test. The source was found to be significantly (> 99%) variable in 4 nights out of 27 in R-band, 1 out of 16 in V-band, and 1 out of 6 nights in I-band. No temporal variations in the colours were observed on IDV timescale. During the course of these observations the total variation in R-band was 0.89 mag observed. We also investigated the spectral energy distribution (SED) using B, V, R, and I band data. We found optical spectral indices in the range of 0.878+-0.029 to 1.106+-0.065 by fitting a power law to these SEDs of PG 1553+113. We found that the source follows a bluer-when-brighter trend on IDV timescales. We discuss possible physical causes of the observed spectral variability.Comment: 13 pages,8 figures, 7 tables, Accepted for publication in MNRA

    Assessment of Epidermal Growth Factor Receptor (EGFR) expression in human meningioma

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>This study explores whether meningioma expresses epidermal growth factor receptor (EGFR) and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression.</p> <p>Methods</p> <p>Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI) was scored on a scale 0-3 (from no staining to strong staining). Staining percentage of immunoreactive cells (SP) was scored 1-5 (from the least to the maximum percent of the specimen staining). Immunohistochemical score (IHS) was calculated as the product of SI and SP.</p> <p>Results</p> <p>Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO) criteria: benign 57/85 (67%), atypical 23/85 (27%), and malignant 5/85 (6%). The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029). A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009). While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p < 0.001).</p> <p>Conclusions</p> <p>To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors.</p

    Extreme photometric and polarimetric variability of blazar S4 0954+65 at its maximum optical and γ-ray brightness levels

    Get PDF
    In 2022 the BL Lac object S4 0954+65 underwent a major variability phase, reaching its historical maximum brightness in the optical and γ -ray bands. We present optical photometric and polarimetric data acquired by the Whole Earth Blazar Telescope (WEBT) Collaboration from 2022 April 6 to July 6. Many episodes of unprecedented fast variability were detected, implying an upper limit to the size of the emitting region as low as 10−4 parsec. The WEBT data show rapid variability in both the degree and angle of polarization. We analyse different models to explain the polarization behaviour in the framework of a twisting jet model, which assumes that the long-term trend of the flux is produced by variations in the emitting region viewing angle. All the models can reproduce the average trend of the polarization degree, and can account for its general anticorrelation with the flux, but the dispersion of the data requires the presence of intrinsic mechanisms, such as turbulence, shocks, or magnetic reconnection. The WEBT optical data are compared to γ -ray data from the Fermi satellite. These are analysed with both fixed and adaptive binning procedures. We show that the strong correlation between optical and γ -ray data without measurable delay assumes different slopes in faint and high brightness states, and this is compatible with a scenario where in faint states we mainly see the imprint of the geometrical effects, while in bright states the synchrotron self-Compton process dominates

    Multifrequency variability of the blazar AO 0235+164. The WEBT campaign in 2004-2005 and long-term SED analysis

    Get PDF
    A huge multiwavelength campaign targeting the blazar AO 0235+164 was organized by the Whole Earth Blazar Telescope (WEBT) in 2003-2005 to study the variability properties of the source. Monitoring observations were carried out at cm and mm wavelengths, and in the near-IR and optical bands, while three pointings by the XMM-Newton satellite provided information on the X-ray and UV emission. We present the data acquired during the second observing season, 2004-2005, by 27 radio-to-optical telescopes. They reveal an increased near-IR and optical activity with respect to the previous season. Increased variability is also found at the higher radio frequencies, down to 15 GHz, but not at the lower ones. The radio (and optical) outburst predicted to peak around February-March 2004 on the basis of the previously observed 5-6 yr quasi-periodicity did not occur. The analysis of the optical light curves reveals now a longer characteristic time scale of 8 yr, which is also present in the radio data. The spectral energy distributions corresponding to the XMM-Newton observations performed during the WEBT campaign are compared with those pertaining to previous pointings of X-ray satellites. Bright, soft X-ray spectra can be described in terms of an extra component, which appears also when the source is faint through a hard UV spectrum and a curvature of the X-ray spectrum. Finally, there might be a correlation between the X-ray and optical bright states with a long time delay of about 5 yr, which would require a geometrical interpretation.Comment: 14 pages, 10 figures (8 included in the text and 2 PNG files), in press for A&

    Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES~2344+514

    Full text link
    The BL Lac 1ES 2344+514 is known for temporary extreme properties (e.g., a shift of the synchrotron SED peak energy νsynch,p\nu_{synch,p} above 1keV). While those extreme states were so far observed only during high flux levels, additional multi-year observing campaigns are required to achieve a coherent picture. Here, we report the longest investigation of the source from radio to VHE performed so far, focusing on a systematic characterisation of the intermittent extreme states. While our results confirm that 1ES 2344+514 typically exhibits νsynch,p>\nu_{synch,p}>1keV during elevated flux periods, we also find periods where the extreme state coincides with low flux activity. A strong spectral variability thus happens in the quiescent state, and is likely caused by an increase of the electron acceleration efficiency without a change in the electron injection luminosity. We also report a strong X-ray flare (among the brightest for 1ES 2344+514) without a significant shift of νsynch,p\nu_{synch,p}. During this particular flare, the X-ray spectrum is among the softest of the campaign. It unveils complexity in the spectral evolution, where the common harder-when-brighter trend observed in BL Lacs is violated. During a low and hard X-ray state, we find an excess of the UV flux with respect to an extrapolation of the X-ray spectrum to lower energies. This UV excess implies that at least two regions contribute significantly to the infrared/optical/ultraviolet/X-ray emission. Using the simultaneous MAGIC, XMM-Newton, NuSTAR, and AstroSat observations, we argue that a region possibly associated with the 10 GHz radio core may explain such an excess. Finally, we investigate a VHE flare, showing an absence of simultaneous variability in the 0.3-2keV band. Using a time-dependent leptonic modelling, we show that this behaviour, in contradiction to single-zone scenarios, can instead be explained by a two-component model.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore