92 research outputs found

    Developmental roles and molecular mechanisms of Asterix/GTSF1

    Get PDF
    Maintenance of germline genomic integrity is critical for the survival of animal species. Consequently, many cellular and molecular processes have evolved to ensure genetic stability during the production of gametes. Here, we describe the discovery, characterization, and emerging molecular mechanisms of the protein Asterix/Gametocyte-specific factor 1 (GTSF1), an essential gametogenesis factor that is conserved from insects to humans. Beyond its broad importance for healthy germline development, Asterix/GTSF1 has more specific functions in the Piwi-interacting RNA (piRNA)-RNA interference pathway. There, it contributes to the repression of otherwise deleterious transposons, helping to ensure faithful transmission of genetic information to the next generation. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications

    Rapid generation of drug-resistance alleles at endogenous loci using CRISPR-Cas9 indel mutagenesis

    Get PDF
    Genetic alterations conferring resistance to the effects of chemical inhibitors are valuable tools for validating on-target effects in cells. Unfortunately, for many therapeutic targets such alleles are not available. To address this issue, we evaluated whether CRISPR-Cas9-mediated insertion/deletion (indel) mutagenesis can produce drug-resistance alleles at endogenous loci. This method takes advantage of the heterogeneous in-frame alleles produced following Cas9-mediated DNA cleavage, which we show can generate rare alleles that confer resistance to the growth-arrest caused by chemical inhibitors. We used this approach to identify novel resistance alleles of two lysine methyltransferases, DOT1L and EZH2, which are each essential for the growth of MLL-fusion leukemia cells. We biochemically characterized the DOT1L mutation, showing that it is significantly more active than the wild-type enzyme. These findings validate the on-target anti-leukemia activities of existing DOT1L and EZH2 inhibitors and reveal a simple method for deriving drug-resistance alleles for novel targets, which may have utility during early stages of drug development

    Evaluation of the starting point of the Lombard Effect.

    Get PDF
    Speakers increase their vocal effort when their communication is disturbed by noise. This adaptation is termed the Lombard effect. The aim of the present study was to determine whether this effect has a starting point. Hence, the effects of noise at levels between 20 and 65 dB(A) on vocal effort (quantified by sound pressure level) and on both perceived noise disturbance and perceived vocal discomfort were evaluated. Results indicate that there is a Lombard effect change-point at a background noise level (Ln) of 43.3 dB(A). This change-point is anticipated by noise disturbance, and is followed by a high magnitude of vocal discomfort

    Decoding the 5' nucleotide bias of PIWI-interacting RNAs

    Get PDF
    PIWI-interacting RNAs (piRNAs) are at the center of a small RNA-based immune system that defends genomes against the deleterious action of mobile genetic elements (transposons). PiRNAs are highly variable in sequence with extensive targeting potential. Their diversity is restricted by their preference to start with a Uridine (U) at the 5' most position (1U-bias), a bias that remains poorly understood. Here we uncover that the 1U-bias of Piwi-piRNAs is established by consecutive discrimination against all nucleotides but U, first during piRNA biogenesis and then upon interaction with Piwi's specificity loop. Sequence preferences during piRNA processing also restrict U across the piRNA body with the potential to directly impact target recognition. Overall, the uncovered signatures could modulate specificity and efficacy of piRNA-mediated transposon restriction, and provide a substrate for purifying selection in the ongoing arms race between genomes and their mobile parasites

    Asterix/Gtsf1 links tRNAs and piRNA silencing of retrotransposons.

    Get PDF
    The Piwi-interacting RNA (piRNA) pathway safeguards genomic integrity by silencing transposable elements (transposons) in the germline. While Piwi is the central piRNA factor, others including Asterix/Gtsf1 have also been demonstrated to be critical for effective silencing. Here, using enhanced crosslinking and immunoprecipitation (eCLIP) with a custom informatic pipeline, we show that Asterix/Gtsf1 specifically binds tRNAs in cellular contexts. We determined the structure of mouse Gtsf1 by NMR spectroscopy and identified the RNA-binding interface on the protein's first zinc finger, which was corroborated by biochemical analysis as well as cryo-EM structures of Gtsf1 in complex with co-purifying tRNA. Consistent with the known dependence of long terminal repeat (LTR) retrotransposons on tRNA primers, we demonstrate that LTR retrotransposons are, in fact, preferentially de-repressed in Asterix mutants. Together, these findings link Asterix/Gtsf1, tRNAs, and LTR retrotransposon silencing and suggest that Asterix exploits tRNA dependence to identify transposon transcripts and promote piRNA silencing

    Fly piRNA biogenesis: tap dancing with Tej

    Get PDF
    Piwi-interacting RNAs (piRNAs) protect animal germlines from the deleterious effects of transposon activity. Unlike other small RNA classes like microRNAs (miRNAs) and small interfering RNAs (siRNAs), an exceptionally large number of factors are implicated in the biogenesis of piRNAs. Kai et al. have now added another one to this growing list, which we discuss in the overall context of our current knowledge of the piRNA biogenesis pathway in the Drosophila ovarian germline. See research article: http://www.biomedcentral.com/1741-7007/12/61

    Computational Study of the Human Dystrophin Repeats: Interaction Properties and Molecular Dynamics

    Get PDF
    Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy

    Key Amino Acid Residues of Ankyrin-Sensitive Phosphatidylethanolamine/Phosphatidylcholine-Lipid Binding Site of Ξ²I-Spectrin

    Get PDF
    It was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of Ξ²-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin. Structure prediction and analysis, supported by in vitro experiments, suggests that β€œopening” of the coiled-coil structure underlies the mechanism of this interaction. Experiments on red blood cells and HeLa cells supported the conclusions derived from the model and in vitro lipid-protein interaction results, and showed the potential physiological role of this binding. We postulate that direct interactions between spectrin ankBDn and PE-rich domains play an important role in stabilizing the structure of the spectrin-based membrane skeleton

    Recessive mutations in SPTBN2 implicate Ξ²-III spectrin in both cognitive and motor development

    Get PDF
    Ξ²-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding Ξ²-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of Ξ²-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that Ξ²-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome
    • …
    corecore