10,240 research outputs found
The Determinants of NFL Ticket Prices: What Managers May Consider when Pricing Tickets
Our purpose of this study is to determine what factors contribute to NFL ticket prices across teams and over time. After creating a theoretically sound model based on past economic studies, a panel data set was constructed based on the 32 NFL teams from the 2002 through the 2010 season. Results of this study show that a team’s previous season’s winning percentage, the average income of the area, the population of the area, and playing in a new stadium all have a positive, and significant, influence on ticket price. This study’s outcome allows fans and others to observe what team managers may consider when making price-changing decisions, and also by what percent a change in each factor will potentially change price. The study also shows what contributes to ticket price over time, an interesting observation given the rapid increase in the demand for football in the last decade
Flexibly Instructable Agents
This paper presents an approach to learning from situated, interactive
tutorial instruction within an ongoing agent. Tutorial instruction is a
flexible (and thus powerful) paradigm for teaching tasks because it allows an
instructor to communicate whatever types of knowledge an agent might need in
whatever situations might arise. To support this flexibility, however, the
agent must be able to learn multiple kinds of knowledge from a broad range of
instructional interactions. Our approach, called situated explanation, achieves
such learning through a combination of analytic and inductive techniques. It
combines a form of explanation-based learning that is situated for each
instruction with a full suite of contextually guided responses to incomplete
explanations. The approach is implemented in an agent called Instructo-Soar
that learns hierarchies of new tasks and other domain knowledge from
interactive natural language instructions. Instructo-Soar meets three key
requirements of flexible instructability that distinguish it from previous
systems: (1) it can take known or unknown commands at any instruction point;
(2) it can handle instructions that apply to either its current situation or to
a hypothetical situation specified in language (as in, for instance,
conditional instructions); and (3) it can learn, from instructions, each class
of knowledge it uses to perform tasks.Comment: See http://www.jair.org/ for any accompanying file
Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan.
Accurate memory for discrete events is thought to rely on pattern separation to orthogonalize the representations of similar events. Previously, we reported that a behavioral index of pattern separation was correlated with activity in the hippocampus (dentate gyrus, CA3) and with integrity of the perforant path, which provides input to the hippocampus. If the hippocampus operates as part of a broader neural network, however, pattern separation would likely also relate to integrity of limbic tracts (fornix, cingulum bundle, and uncinate fasciculus) that connect the hippocampus to distributed brain regions. In this study, healthy adults (20-89 years) underwent diffusion tensor imaging and completed the Behavioral Pattern Separation Task-Object Version (BPS-O) and Rey Auditory Verbal Learning Test (RAVLT). After controlling for global effects of brain aging, exploratory skeleton-wise and targeted tractography analyses revealed that fornix integrity (fractional anisotropy, mean diffusivity, and radial diffusivity; but not mode) was significantly related to pattern separation (measured using BPS-O and RAVLT tasks), but not to recognition memory. These data suggest that hippocampal disconnection, via individual- and age-related differences in limbic tract integrity, contributes to pattern separation performance. Extending our earlier work, these results also support the notion that pattern separation relies on broad neural networks interconnecting the hippocampus
Wind tunnel tests on a tail-less swept wing span-distributed cargo aircraft configuration
The configuration consisted of a 30 deg -swept, untapered, untwisted wing utilizing a low-moment cambered airfoil of 20 percent streamwise thickness designed for low wave drag at M = 0.6, C sub L = 0.4. The tests covered a range of Mach numbers 0.3 to 0.725 and chord Reynolds number 1,100,000 to 2,040,000, angles of attack up to model buffet and sideslip angles + or - 4 deg. Configuration build up, wing pod filleting, airfoil modification and trailing edge control deflection effects were briefly investigated. Three wing tip vertical tail designs were also tested. Wing body filleting and a simple airfoil modification both produced increments to maximum lift/drag ratio. Addition of pods eliminated pitch instability of the basic wing. While the magnitude of these benefits probably was Reynolds number sensitive, they underline the potential for improving the aerodynamics of the present configuration. The cruise parameter (product of Mach number and lift/drag ratio) attained a maximum close to the airfoil design point. The configuration was found to be positively stable with normal control effectiveness about all three axes in the Mach number and C sub L range of interest
Aerodynamic characteristics of a tandem wing configuration of a Mach number of 0.30
An investigation was conducted to determine the aerodynamic characteristics of a tandem wing configuration. The configuration had a low forward mounted sweptback wing and a high rear mounted sweptforward wing jointed at the wing tip by an end plate. The investigation was conducted at a Mach number of 0.30 at angles of attack up to 20 deg. A comparison of the experimentally determined drag due to lift characteristics with theoretical estimates is also included
Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement
A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8
Influence of optimized leading-edge deflection and geometric anhedral on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration
An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories
Subsonic longitudinal aerodynamic characteristics and engine pressure distributions for an aircraft with an integrated scramjet designed for Mach 6 cruise
A 1/10-scale model of a proposed hypersonic aircraft with an integrated scramjet was tested. The investigation took place over a Mach number range from 0.2 to 0.7 and an angle of attack range from 2 deg to approximately 17 deg at a sideslip angle of 0 deg. The primary configuration variables studied were engine location, internal engine geometry, and external engine geometry. The results are presented without analysis
- …