https://ntrs.nasa.gov/search.jsp?R=19790018924 2020-03-21T22:45:26+00:00Z

and and the function of the court of a constraint of a constraint and the state of the state of the second s

NASA Technical Memorandum 80083

(NASA-TM-80083) INFLUENCE OF OPTIMIZED N79-27095 LEADING-EDGE DEFLECTION AND GEOMETRIC IC A04/MF A01 ANHEDRAL ON THE LOW-SPEED AERODYNAMIC IC A04/MF A01 CHARACTERISTICS OF A LOW-ASPECT-RATIO HIGHLY Unclas SWEPT ARROW-WING CONFIGURATION (NASA) 53 p G3/02 29305

INFLUENCE OF OPTIMIZED LEADING-EDGE DEFLECTION AND GEOMETRIC ANHEDRAL ON THE LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A LOW-ASPECT-RATIO HIGHLY SWEPT ARROW-WING CONFIGURATION

Paul L. Coe, Jr. and Jarrett K. Huffman

June 1979

Langley Research Center Hampton, Virginia 23665

SUMMARY

An investigation has been conducted in the Langley 7- by 10-foot tunnel to determine the influence of an optimized leading-edge deflection on the low-speed aerodynamic performance of a configuration with a low-aspect-ratio, highly swept wing. Tests have also been conducted to determine the sensitivity of the lateral-stability derivative $(C_{l_{B}})$ to geometric anhedral.

The optimized leading-edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to the spanwise variation of upwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16° at the side of body to 50° at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved with the smooth, continuously warped leading-edge contour. Attempts to approximate this smooth contour by a series of discrete deflections of a multi-segmented leading-edge system resulted in substantial increments in drag. The drag increments, introduced by the surface discontinuities of the multi-segmented system, markedly reduced the aerodynamic performance.

Deflecting the leading edge was found to provide a favorable reduction in the inherently high level of $\mathcal{C}_{L\beta}$. Comparison of experimental results with simple theoretical estimates of $\partial \mathcal{C}_{L\beta}/\partial \mathcal{C}_{L}$ shows that excellent correlation exists for conditions of attached flow. Furthermore, the results of tests conducted to determine the sensitivity of $\mathcal{C}_{L\beta}$ to geometric anhedral indicate values of $\partial \mathcal{C}_{L\beta}/\partial \Gamma$ which are in reasonable agreement with estimates provided by simple vortex-lattice theories.

INTRODUCTON

The National Aeronautics and Space Administration is currently investigating the aerodynamic characteristics of advanced aircraft concepts which are capable of cruising efficiently at supersonic speeds. These conceptual designs are representative of future generation commercial and military vehicles and incorporate wing sweeps on the order of 70° to 80°. (See, for example, refs. 1 and 2.) Unfortunately, owing to the high wing sweeps, such configurations have traditionally exhibited unacceptable low-speed characteristics. The most significant of these unacceptable characteristics being deficiencies in low-speed performance and excessively high levels of effective dihedral ($C_{L\beta}$). The present investigation is part of the Swept-Wing Aerodynamic Technology (SWAT) effort. This effort is intended to yield fundamental information necessary to provide highly swept-wing designs with acceptable low-speed characteristics. Previous low-speed studies with a configuration having the same wing geometry as the present model are reported in references 3 to 6. The present study was specifically intended to: (1) provide an assessment of the aerodynamic performance benefits which could be achieved with a suitably optimized leading edge; and (2) determine the sensitivity of the lateral-stability derivative (C_{2R}) to geometric anhedral.

The tests were conducted in the Langley.7- by 10-foot tunnel over an angleof-attack range from about -6° to 15° for sideslip angles of 0° and $\pm 5^{\circ}$. The tests were conducted at a Reynolds number (based on the wing mean aerodynamic chord) of about 2.8 x 10° .

SYMBOLS

The longitudinal data are referred to the stability system of axes, and the lateral-directional data are referred to the body system of axes as illustrated in figure 1. The moment reference center for the tests was located at 59.166 percent of the wing-reference mean aerodynamic chord. The wing-reference area and reference mean aerodynamic chord are based on the wing planform which results from extending the inboard (74°) leading-edge sweep angle and the outboard (41.457°) trailing-edge sweep angle to the model center line. (See fig. 2.)

The dimensional quantities herein are given in both the International System of Units (SI) and the U.S. Customary Units.

- A_{fus} fuselage cross-sectional area, m^2 (ft²)
- AR aspect ratio

· . • .

4

.

- b wing span, m (ft)
- CD drag coefficient, Drag/gSref
- CD_i induced drag coefficient

 $C_{D_{\min}}$ minimum drag coefficient

CD_{sym} drag coefficient of equivalent configuration without twist and camber at zero lift

- CL lift coefficient, Lift/gSref
- C rolling-moment coefficient, Rolling moment/aSrefb

C_m pitching-moment coefficient, Pitching moment/qS_{ref}c

Cn yawing-moment coefficient, Yawing moment/gSrefb

Cy side-force coefficient, Side force/qSref

c reference mean aerodynamic chord, m (ft)

q free-stream dynamic pressure, Pa (1bf/ft²)

S leading-edge suction parameter

 S_{ref} reference wing area, m^2 (ft²)-

X,Y,Z body axis coordinates

X_{fus} fuselage body station, origin at nose, positive rearward, m (ft)

 α angle of attack, deg

 β angle of sideslip, deg

 Γ_1, Γ_2 increment in geometric anhedral, relative to the basic wing geometry, at span stations y₁ and y₂, respectively, deg (see fig. 2(a))

 $\delta_{L.E.}$ leading-edge deflection, positive when leading edge is down, deg

ε upwash angle, deg

X-Y projection of the included angle between the local flow direction at the leading edge and a ray normal to the leading-edge hinge line, deg (see fig. 1)

Derivatives:

ξ

1

.

 $C_{L_{\alpha}} = \partial C_{L} / \partial \alpha$, per degree $C_{2_{\beta}} = \partial C_{2} / \partial \beta$, per degree $C_{n_{\beta}} = \partial C_{n} / \partial \beta$, per degree $C_{\gamma_{\beta}} = \partial C_{\gamma} / \partial \beta$, per degree

MODEL

The dimensional characteristics of the model used in the present study are listed in table 1 and shown in figures 2 and 3. The wing geometry is in conformance with the cruise shape geometry defined in reference 7. A photograph of the model in the Langley 7- by 10-foot tunnel is presented in figure 4.

Previous studies with configurations having the same wing geometry as the present model are reported in references 3 through 6. The present study was intended to address generic problems associated with highly swept wings;

consequently, the model did not incorporate either nacelles or an aft fuselage. The model-did, however, incorporate a multi-segmented leading edge which permitted continuously variable deflections from 0° to 60° about the 70.688° swept hinge line. (See fig. 2.) This particular hinge line was selected to allow a direct comparison with results from reference 5. The model further incorporated anhedral breaks at span stations Y/b/2 = 0.234 and 0.736 which permitted the inclusion of additional geometric anhedral.

TESTS AND CORRECTIONS

The investigation was conducted in the Langley 7- by 10-foot high-speed tunnel. (See ref. 8 for a description of the tunnel.) Forces and moments were measured with a standard six-component strain-gage balance mounted intertal to the model. The tests were conducted at a dynamic pressure of 1436.4 Pa $(30 \ 1bf/ft^2)$. This value of dynamic pressure resulted in a Reynolds number (based on the wing mean aerodynamic chord) of 2.8 x 10⁶ at a corresponding Mach number of 0.14. The angle of attack ranged from about -6^o to 15^o for sideslip angles of 0^o and +5^o. Both angle of attack and sideslip have been corrected for the effect of sting and balance bending under aerodynamic load.

The data have been corrected for jet-boundary and blockage effects using the methods outlined in reference 9 and 10, respectively. Balance chamber pressure and model base pressure were measured and the drag measurements adjusted to correspond to conditions of free-stream static pressure acting over the base of the model.

In accordance with the method of reference 11, 0.16 cm (0.0625 in.) wide transition strips of no. 70 carborundum grains were placed 3.81 cm (1.5 in.) aft of the leading edges of the wing and outboard vertical tails. Similarly, no. 80 carborundum grains were placed 3.81 cm (1.5 in.) aft of the model nose.

ž.

PRESENTATION OF RESULTS

A run schedule and tabular listing of data are provided in the data supplement at the end of this report. The results and discussion are presented in accordance with the following outline:

	Pag	e Figure
Longitudinal aerodynamic characteristics		
Configuration with undeflected leading edge Effect of leading-edge deflection	.5 .5	5-6 7-16
Lateral-directional characteristics		
Configuration with undeflected leading edge Effect of leading edge deflection Effect of geometric anhedral	. g	18_10

RESULTS AND DISCUSSION

The present study was intended to address generic problems associated with highly swept wings; therefore, the model did not incorporate either nacelles or an aft fuselage. In order to provide some insight into the possible effects such configuration components may have on absoluate quantities, suitable comparisons are made (where possible) with data obtained for a model which had the same wing geometry, but included both underwing nacelles and an aft fuselage (see ref. 5). It should be noted, however, that in addireference 5 incorporated a fuselage with a different cross-sectional area distribution (see fig. 3). In as much as the fuselages of both the present ference in cross-sectional area also results in a difference in wing-body

Longitudinal Aerodynamic Characteristics

<u>Configuration with undeflected leading edge</u>.- Figure 5 presents the longitudinal aerodynamic characteristics for the present configuration with undeflected leading edges ($\delta_{L,E,=} = 0$). At low angles of attack ($\alpha < 2^{\circ}$), the lift and pitching-moment coefficients are seen to be fairly linear. The liftcurve slope and neutral point are evaluated to be 0.037 deg⁻¹ and 0.5505 \bar{c} , respectively and are in reasonable agreement with the theoretically predicted values (0.036 and 0.5312 \bar{c}) discussed in reference 6. For angles of attack from about 20 to 40, the flow over the main wing panels remains well attached; however, previous studies (see ref. 5), using smoke-flow visualization have indicated the existence of a tightly wound vortex formed close to the surface along the leading edge of the outboard wing panel. As might be anticipated, the existence of this tightly wound vortex is found to be accompanied by a small increase in longitudinal stability. At angles of attack greater than corresponding pitch-up tendency. This result is attributed to the simultaneous formation of classical wing-apex vortices and to the separation of the tightly wound vortex from the outboard wing panel.

Ξ.

Figure 6 presents a comparison of the data of figure 5 with the corresponding data from reference 5. The data of reference 5 exhibit trends which are identical to those of the present model. However, the geometric differences result in differences in the quantative values. Obviously, the lower value of drag exhibited by the present model results from the reduced skin-friction and interference drag associated with the omission of the aft fuselage and underwing nacelles. The negative increment in the pitching aft fuselage (see ref. 5). The difference in the vortex-lift increment for the two configurations is not well understood. However, this difference affect the formation of the wing-apex vortices.

Effect of leading-edge deflection. - Figure 7 presents the longitudinal aerodynamic characteristics for the configuration with a uniform 300 deflection of the entire leading edge (see fig. 2). As has been shown in

reference 5, this leading-edge deflection results in fairly well attached flow for angles of attack from about 0° to 8°. For angles of attack greater than 8°, flow-visualization studies show the onset of a classical leading-edge vortex separation originating at about the mid-point of the wing semispan. It should also be noted, that at very low angles of attack ($\alpha < 0^{\circ}$), deflecting the leading edges, apparently results in flow separation on the lower wing surfaces as evidenced by the nonlinearity in CL versus α . Figure 7 also presents the longitudinal aerodynamic data from reference 5 for the comparable (δ L.E. = 30°) condition. As can be seen, the differences in data for the present tests and reference 5 are generally similar to those previously discussed for the δ L.E. = 0° condition. As expected, with the leading edges deflected to suppress the leading-edge vortices, excellent agreement in CL versus α is obtained over the angle-of-attack range tested.

Figure 8 provides a comparison of the data for the conditions of $\delta_{L.E.} = 0^{\circ}$ and 30° . As has been noted in reference 5, deflecting the wing leading edges to eliminate the vortex flow reduces the undesirable vortex induced pitch-up tendency and also reduces the vortex related drag. In order to permit a quantative evaluation of the performance improvement achieved by leading-edge deflection, figure 8 also presents the theoretical polars corresponding to the conditions of: (1) minimum induced drag (100-percent leading-edge suction) and (2) full leading-edge separation with no subsequent flow attachment (0-percent leading-edge suction). These conditions are

$$C_{\rm D} = C_{\rm D_{\rm Sym}} + C_{\rm L}^2 / \pi AR \tag{1}$$

and

٥,

4

C.

$$C_D = C_{D_{SYM}} + C_L \tan (C_L/C_{L_{\alpha}})$$

It should be noted that equations (1) and (2) are, of course, valid only for symmetric wings with no twist or camber and are presented herein solely to permit the aerodynamic performance (achieved by the various leading-edge treatments) to be quantified. This is accomplished by introducing the leading-edge suction parameter S (see ref. 12 for a comprehensive discussion of leading-edge suction) defined herein as

(2)

$$S = \frac{C_D - [C_{D_{SVM}} + C_L \tan (C_L/C_{L_{\alpha}})]}{C_L^2 / AR - C_L \tan (C_L/C_{L_{\alpha}})}$$
(3)

It should be noted than in equations (2) and (3), the quantity C_{L} tan $(C_{L}/C_{L\alpha})$ has been used in place of the more customary C_{L} tan α . (See ref. 12.) This present notation has been introduced to insure a common basis for comparison of leading-edge suction for the various leading-edge treatments. The value of C_{D}_{sym} has been estimated for the present model tests using the relationship

 $C_{D_{sym}} = C_{D_{min}} + \frac{C_{L^2}|_{QC_{D_{min}}}}{AR}$

ORIGINAL PAGE IS OF POOR QUALITY (4)

Evaluation of equation (4) yields $C_{D_{sym}} = 0.0096$. The value of $C_{L_{\alpha}}$ has been determined experimentally (for the linear region of C_L versus α) to be 0.037 and, as mentioned previously, is in agreement with theoretical results.

Figure 9 presents the calculated values of leading-edge suction. As can be seen, the uniform 30° deflection results in substantially increased values relative to the $\delta_{L.E.} = 0^\circ$ condition. This result is similar to the results presented in reference 5, wherein this uniform 30° deflection was intially considered. As pointed out in reference 5, the uniform 30° does not represent an optimum condition. In fact, the uniform 30° deflection is considered to be over-deflected in the apex region, while being under-deflected further outboard. This situation developed because the leading-edge system tested in reference 5 was limited to four segments, and attempts to optimize the leading-edge deflection by aligning the leading edge with the local upwash (as will be discussed) resulted in large discontinuities in contour. These large discontinuities were found to result in quite pronounced regions of separated flow, which substantially degraded the performance. Consequently, the uniform 30° deflection was considered an appropriate compromise.

In as much as the present configuration employed a multi-segmented leading edge (which could be capable of approximating a continuously warped surface), an attempt was made to optimize the spanwise variation of leading-edge deflection. The optimal leading edge is considered herein as one for which the leading edge is aligned with the upwash along the entire span. Since $\alpha = 10^{\circ}$ is representative of the angle-of-attack condition for low-speed operations, attempts were made to obtain attached flow for angles of attack at least up to this condition.

Figure 10 presents the theoretical spanwise variation of upwash (ϵ) obtained with a vortex-lattice computational model at an angle of attack of 10° (see refs. 5 and 13). In general, for a swept hinge line, the angular deflection required to align the leading edge with an upwash angle ϵ would be defined by the standard relationship of sweep theory

$$\delta_{\text{L.E.}} = \tan^{-1} \left[\frac{\tan \epsilon}{\cos \epsilon} \right]$$

4

(5)

However, previous smoke flow-visualization studies (see ref. 5) have shown that the incoming flow is approximately perpendicular to the hinge line ($\xi = 0^{\circ}$), and therefore, equation (5) yields the simple result that $\delta_{L.E.} = \epsilon$.

With the model at $\alpha = 10^{\circ}$ and with the leading edge deflected to approximate the upwash schedule of figure 10, observtions of wool surface tufts revealed flow separation originating outboard of $Y_{b/2} = 0.5$. This result appeared to be attributal to the fairly sharp corner introduced by rather high deflection about the simple hinge line. Accordingly, the leading-edge deflection of the

inboard span was reduced until a condition was reached wherein further reductions resulted in classical leading-edge vortex separation. The multi-segmented leading edge was then faired and smoothed to eliminate leading-edge discontinuities. The spanwise variation of leading-edge deflection, as developed above, is compared in figure 11 with the theoretical upwash. The leading-edge deflection schedule is seen to define a continuously warped surface which varies from 16° inboard to 50° outboard. This leading-edge geometry will herein after be

Figure 12 presents the longitudinal aerodynamic characteristics obtained with $\delta_{L,E} = 16^{\circ} - 50^{\circ}$, while figure 13 presents a comparison of these data with the previously discussed results for the $\delta_{L,E} = 0^{\circ}$ and 30° conditions. As can be seen, the data for $\delta_{L,E} = 16^{\circ} - 50^{\circ}$ indicate attached flow conditions for angles of atack from about 0° to 10°. At angles of attack above 10°, vortex separation was observed to originate along the leading edge outboard of Y/b/2 =0.5. The occurence of this leading-edge separation is seen to be consistent with the slight pitch-up characteristic exhibited by the data of figure 12.

The leading-edge suction parameter obtained with the above continuously warped leading-edge geometry ($\delta_{L.E.} = 16^{\circ} - 50^{\circ}$) is presented in figure 14. As can been seen, $\delta_{L.E.} = 16^{\circ}$ results in a substantial improvement in the aerodynamic performance relative to the previous $\delta_{L.E.} = 30^{\circ}$ geometry. In particular, $\delta_{L.E.} = 16^{\circ} - 50^{\circ}$ is seen to achieve values of suction on the order of 90 percent at representative second segment climb conditions (i.e., $C_L \approx 0.3$). However, at reduced. It should be noted that the model tested did not employ trailing-edge flaps, and therefore, the higher values of C were achieved at fairly high angles of attack. Consequently, the values of S presented for the high-lift conditions are not representative. Based on the results presented in reference 5, it is anticipated that the use of a trailing-edge flap system would permit increased levels of suction to be achieved for the high-lift condition.

The effect of Reynolds number on the leading-edge suction parameter has been discussed in reference 12. The results presented therein indicate that increasing the Reynolds number from the low values of the present tests to actual flight values will result in only modest increases in S for the separated flow condition (e.g., the condition discussed herein with $\delta_{L,E} = 0^{\circ}$). However, for attached flow conditions (as achieved with $\delta_{L,E} = 16^{\circ} - 50^{\circ}$), increasing Reynolds number results in pronounced increases in S. Based on these results, it would appear that the level of leading-edge suction parameter achieved with the attached flow, $\delta_{L,E} = 16^{\circ} - 50^{\circ}$ deflection is conservative.

It is recognized that while the continuously warped leading edge would provide marked improvements in low-speed aerodynamic performance, the mechanical complexity required to generate this smooth contour from the high-speed cruise shape may limit its practical application. Correspondingly, tests were conducted in which the leading-edge deflection ($\delta_{L,E} = 16^{\circ} - 50^{\circ}$) was preserved, but the fairing between the adjacent segments of the multi-segmented system removed. Figure 15 presents a comparison of the longitudinal data obtained with $\delta_{L,E} = 16^{\circ} - 50^{\circ}$ for both faired and unfaired conditions. As can be seen, the impact of removing the leading-edge fairings is largely limited to an increase in drag. This result correlates well with observations made of wool tufts

ORIGINAL PAGE IS

ORIGINAL PAGE IS

during the limited flow visualization portion of the tests. Although no large regions of separation could be attributed to the removal of the segment fairings, the tufts were observed to be slightly more unsteady, thereby indicating localized regions of separation. Consideration of the leading-edge suction parameter presented in figure 16 shows that the discrete multi-segmented leading edge with $\delta_{L,E}$ = 16° - 50° exhibits levels of the leading-edge suction parameter which are below those values achieved with the simple uniform 30°

Lateral-Directional Characteristics

<u>Configuration with undeflected leading edge</u>.- Figure 17 presents the lateral-directional stability derivatives for the present configuration with undeflected leading edges. Also presented in figure 17 are corresponding results from reference 5 which, as previously mentioned, were obtained with a model which had the same wing geometry but incorporated a different fuselage and included under-wing nacelles. As can be seen from figure 17, both configurations exhibit neutrally stable values of static directional stability (C_{ng}) for angles of attack up to about 4°. For angles of attack greater than 4° (corresponding to the angle of attack for which the wing-apex-vortices are first evident), the configuration exhibits a marked increase in C_{ng} . This phenomenon has been observed previously (see ref. 5) and has been attributed to the interaction of the wing-apex vortices with the forward portion of the configuration.

The data of figure 17 also show that both configurations exhibit high levels of effective dihedral $(C_{l\beta})$, as would be expected for the low-aspectratio wing. References 14 and 15 have shown that these high levels of $C_{l\beta}$ typically result in Dutch roll instabilities and reversals in pilot-commanded roll rates. The analysis of reference 4 has also shown that, because of limited lateral-control capabilities (typical of low-aspect-ratio wings), the high values of $C_{l\beta}$ would necessitate excessive approach speeds to meet currently accepted cross-wind landing requirements.

. 12

4

It is interesting to note that although both the present configuration and the configuration of reference 5 exhibit about the same slope of $C_{l\beta}$ versus α , the magnitude of $C_{l\beta}$ for the present configuration is reduced. This reduction in $C_{l\beta}$ is believed to be due to the omission of the under-wing nacelles and to a difference in the aft wing-body intersection.

<u>Effect of wing leading-edge deflection</u>.- Figure 18 presents the lateraldirectional stability derivatives for the configuration with $\delta_{L.E.} = 0^{\circ}$, 30°, and 16° - 50°. As can be seen by comparison of the results presented, both of the deflected leading edge geometries resulted in a reduction in $C_{n\beta}$. The reduction in $C_{n\beta}$ at low angles of attack is simply due to the deflected leading edge providing an increased vertical area forward of the moment reference center. At higher angles of attack, the dramatic reduction in $C_{n\beta}$ is, of course, associated with the suppression of the wing-apex-vortices. Although this reduction in $C_{n\beta}$ at high angles of attack may appear to be adverse, previous studies (see ref. 17) have shown that positive increments in $C_{n\beta}$, when originating forward of the center of gravity (as is the case considered herein), are accompanied by undesirable reductions in damping in yaw. Consequently, deflection of the leading edge may also improve the high angle-of-vttack directional stability characteristics.

The data of figure 18 also indicate that deflecting the leading edge yields a favorable increment in $C_{L\beta}$. This result is primarily due to the simple increase in geometric anhedral which accompanies the leading-edge deflections. Figure 19 presents these same data as the variation of $C_{L\beta}$ with respect to C_{L} for the various leading-edge deflections. Noted on the figures are the regions of separated and attached flow, as discussed in connection with figures 5, 7, and 12. As can be seen by comparison of the results presented for the conditions under which attached flow exists, positive increments in $C_{L\beta}$ of 0.00016 and 0.00022 are obtained (relative to $\delta_{L.E.} = 0^{\circ}$) for $\delta_{L.E.} = 30^{\circ}$ and $16^{\circ} - 50^{\circ}$, respectively.

It should be noted, that for conditions of attached flow, $\partial C_{l\beta}/\partial C_{L}$ is found to be independent of leading-edge geometry and has a value of -0.0058. This value of $C_{l\beta}/\partial C_{L}$ is in excellent agreement with the value of -0.0061 obtained from the expression

 $\partial C_{l\beta}/\partial C_{L} = \frac{2}{3} \cdot \frac{1}{AR} \cdot \frac{2\pi}{360}$

 F_{i}^{\prime}

4

(6)

which is developed in reference 18. The break in the slope of $C_{L\beta}$ versus C_{L} is a product of flow separation. In as much as a properly designed configuration would be intended to operate with attached flow, the values of $C_{L\beta}$ for conditions of separated flow are not applicable. Extrapolation of the attached flow results to higher lift coefficients (as could be achieved with a simple trailing-edge flap system) shows that the configuration would exhibit values of $C_{L\beta}$ of about -0.003 at a nominal approach lift coefficient of 0.6.

Effect of geometric anhedral.- The results of the preceding section indicates that, as expected, high values of $C_{l\beta}$ are inherent to the low-aspect-ratio highly swept wing. Consequently, tests were conducted in order to determine the sensitivity of $C_{l\beta}$ to additional geometric anhedral and to correlate these results with existing theory. These tests were conducted with the geometric anhedral increased at span stations y/b/2 = 0.234 and 0.736 (see fig. 1). The leading-edge geometry for the configuration during this phase of the study was limited to the continuously warped $\delta_{L.F.} = 16^{\circ} - 50^{\circ}$ condition, which was previously found to exhibit superior longitudinal performance. Examination of the tabulated data (presented in the data supplement at the end of this report) for the various anhedral angles tested shows that the longitudinal variables were not influenced by anhedral. The data further show that the geometric anhedral does not have any significant effect on the directional stability characteristics. Consequently, the discussion is limited to a consideration of the influence of geometric anhedral on C_{L0} .

ORIGINAL PAGE IS OF POOR QUALITY

Figure 20 presents the variation of $C_{L\beta}$ with C_{L} for the various anhedral angle combinations tested. From theoretical considerations, it would be expected that the values of $\partial C_{L\beta}/\partial \Gamma$ (as determined by cross-plotting the data of fig. 20) would be constant for attached flow conditions. However, analysis of the data of figure 20 shows that $\partial C_{L\beta}/\partial \Gamma$ increases with increasing lift coefficient. To determine the additive nature of the experimental results for $C_{L\beta}$ versus C_{L} , a selected combination of $\Gamma_1 = 4^{\circ}$ and $\Gamma_2 = 11^{\circ}$ was tested. The experimental results (see fig. 21) are seen to compare well with results obtained by adding the experimentally determined incremental values of $C_{L\beta}$ presented in figure 20.

Figure 22 presents the theoretical variation of $\partial C_{L\beta}/\partial \Gamma$ as a function of the corresponding nondimensional semispan location. The theoretical results were obtained with a vortex-lattice computational model which is based on the theory of reference 13. The range of experimental results for $\partial C_{L\beta}/\partial \Gamma$, evaluated from figure 20 at $C_L = 0.2$ and 0.4, are presented for comparison. It is noted that although the experimental values of $\partial C_{L\beta}/\partial \Gamma$ have been shown to increase with increasing C_L , they are in reasonable agreement with the theoretical results. Furthermore, both the vortex-lattice theoretical results values of $\partial C_{L\beta}/\partial \Gamma$ obtained using the simple design chart procedure contained in reference 19.

The results presented in figure 22 indicate that quite substantial reductions in $C_{L\beta}$ may be achieved by introducing geometric anhedral at inboard span locations. However, it should be recognied that a detailed configuration study is required to determine the most effective means of incorporating such additional anhedral.

۰.

4

As an illustration, the simplified analysis presented in the appendix considers the case wherein anhedral is added at an inboard span location. The analysis assumes that the wing-tip clearance remains unchanged as would be required for the case where the landing gear length was held constant. Obviously, under these conditions, adding geometric anhedral at inboard locations necessitates the addition of dihedral at outboard locations. The results presented in the appendix show that for these conditions, the net resulting improvement in C_{l_R} is negligible.

SUMMARY OF RESULTS

The results of a study to determine the influence of optimized leading-edge deflection and geometric anhedral on the low-speed performance and lateral stability of configurations with highly swept wings may be summarized as follows:

1. Leading-edge deflection is effective in suppressing the formation of wing-anex-vortices and promoting attached flow conditions.

2. Due to the spanwise variation of upwash, the optimal leading edge deflection is a smooth, continuously warped surface. For the particular configuration ration studied, levels of leading-edge suction on the order of 90-percent are achieved with a smooth, continuously varying leading-edge deflection corresponding to 16° at the side-of-body and increasing to 50° at the wing tip,

3. Small discontinuities in surface contour, introduced in an attempt to approximate the smooth continuously warped leading edge with a series of discrete deflections of a multi-segmented leading-edge system, resulted in large increments in drag and corresponding large reductions in the leading-edge suction parameter.

4. A uniform leading-edge deflection of 30° (representing an average value of the continuously warped leading-edge deflection) provided higher values of the leading-edge suction parameter than provided by the discrete multi-segmented system. This result is apparently due to the elimination of the small surface discontinuities introduced by deflecting the individual segments through different angles.

5. Deflecting the entire leading edge to achieved attached flow is found to provide a favorable reduction in the inherently high level of $C_{2\beta}$ which is associated with the low-aspect-ratio highly swept wing.

6. The theoretical value of $\partial C_{2\beta}/\partial C_L$ is found to be in excellent agreement with experimental results for conditions where attached flow exists.

7. The inclusion of additional geometric anhedral to reduce the high levels of $C_{2\beta}$ is found to yield values of $\partial C_{2\beta}/\partial l^{\circ}$ which are in reasonable agreement with theoretical estimates.

APPENDIX

Effect of Geometric Anhedral on $C_{l_{\mathcal{B}}}$

The following simple analysis is intended to illustrate the effect on $C_{l\beta}$ of increasing the geometric anhedral of the configuration reported herein. The analysis assumes that the wing-tip clearance remains unchanged, as would be required for the case wherein the landing gear length is held constant.

Consider the wing semispan sketched in figure A-1. The spanwise location of the anhedral breaks, and the corresponding anhedral angles define the change in vertical height of the wing tip as

$$Z_{\text{TIP}} = \Gamma_{i} (b/2 - y_{i}) + \Gamma_{0} (b/2 - y_{0})$$
 (A-1)

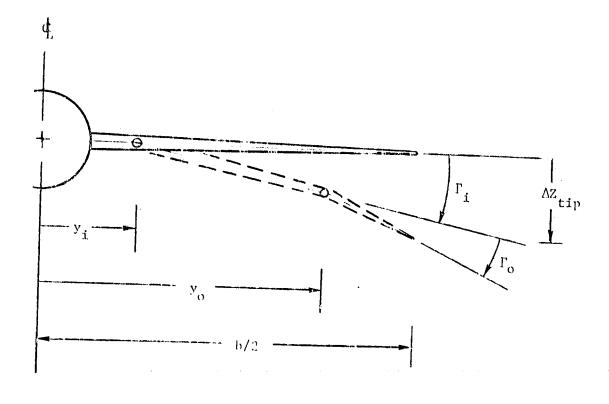
where the subscripts i and o refer to the values associated with assumed inboard and outboard locations, respectively. Requiring $Z_{TIP} = 0$ and solving for Γ_0 yields

$$\Gamma_{0} = -\Gamma_{1} \frac{1 - \frac{y_{1}}{b/2}}{1 - \frac{y_{0}}{b/2}}$$
(A-2)

As shown in the body of this report (see figs. 20 and 21), the increment in $C_{2\beta}$ resulting from Γ_i and Γ_0 may be determined by linear combination; therefore

$$\Delta C_{l_{\beta}} = \frac{\partial C_{l_{\beta}}}{\partial \Gamma_{i}} \cdot \Gamma_{i} + \frac{\partial C_{l_{\beta}}}{\partial \Gamma_{0}} \cdot \Gamma_{0}$$
(A-3)

Substituting equation (A-2) into equation (A-3) yields


. .

.

4

$$\Delta C_{l_{\beta}} = \left[\frac{\partial C_{l_{\beta}}}{\partial \Gamma_{i}} - \left(\frac{1 - \frac{y_{i}}{b/2}}{1 - \frac{y_{0}}{b/2}} \right) \cdot \frac{\partial C_{l_{\beta}}}{\partial \Gamma_{0}} \right] \qquad \Gamma_{i}$$
(A-4)

Evaluation of equation (A-4) shows that, for the variation of $\partial C_{2\beta} / \partial \Gamma$ presented in figure 22, maintaining constant wing-tip clearance would limit the favorable increments in $C_{1\beta}$ to negligible values. For example, consider the result for

$$\Delta Z_{tip} = \Gamma_i \left(\frac{b}{2} - y_i\right) + \Gamma_o \left(\frac{b}{2} - y_o\right)$$

for $\Delta Z_{tip} = 0$

$$\Gamma_{0} = -\Gamma_{i} \frac{1 - y_{i}/\frac{b}{2}}{1 - y_{0}/\frac{b}{2}}$$

ć

-

:

ŧ.

÷

œ'

Figure A.- Geometric relationship of anhedral angles and wingtip height.

14

· · · ·

the spanwise location of anhedral breaks tested on the present configuration. At span locations $y_i/b/2 = 0.234$ and 0.736, the theoretical results of figure 22 show $\partial C_{l\beta}/\partial \Gamma_i = 0.85 \times 10^{-4}$ and $\partial C_{l\beta}/\partial \Gamma_0 = 0.27 \times 10^{-4}$. Assuming the anhedral at the inboard location is increased by 5° (with no constraint on wing-tip clear-ance); the increment in $C_{2\beta}$ for this condition would be $\Delta C_{l\beta} = 4.25 \times 10^{-4}$. However, constraining the change in wing-tip clearance to zero, reduces the increment to $\Delta C_{2\beta} = 0.33 \times 10^{-4}$.

ORIGINAL PAGE IS DE POOR QUALITY

ŧ

REFERENCES

- Robins, A. Warner; Morris, Odell A.; and Harris, Roy V., Jr.: Recent Results in the Aeodynamics of Supersonic Vehicles. J. Aircraft, vol. 3, 1966, pp. 573-577
- Robins, A. Warner; Lamb, Milton; and Miller, David S.: Aerodynamic Characteristics at Mach Numbers of 1.5, 1.8, and 2.0 of a Blended Wing-Body Configuration With and Without an Integral Canard. NASA TP 1427, 1979
- 3. Coe, Paul L., Jr.; McLemore, H. Clyde; and Shivers, James P.: Effects of Upper Surface Blowing and Thrust Vectoring on Low-Speed Aerodynamic Characteristics of a Large-Scale Supersonic Transport Model. NASA TN D-8296, 1976
- 4. Coe, Paul L., Jr.; Smith, Paul M.; and Parlett, Lysle P.: Low-Speed Wind-Tunnel Investigation of an Advanced Supersonic Cruise Arrow-Wing Configuration. NASA TM 74043, 1977
- 5. Coe, Paul L., Jr.; and Weston, Robert P.: Effects of Wing Leading-Edge Deflection on the Low-Speed Aerodynamic Characteristics of a Low-Aspect-Ratio Highly Swept Arrow-Wing Configuration. NASA TM 78787, 1978
- 6. Coe, Paul L., Jr.; and Thomas, James L.: Theoretical and Experimental Investigation of Ground Induced Effects for a Low-Aspect-Ratio Highly Swept Arrow-Wing Configuration. NASA TM 80041, 1979

۲.

...**p**.

4

6 '

- Staff, Hampton Technical Center, LTV Aerospace Corporation: Advanced Supersonic Technology Concept Study Reference Characteristics. NASA CR 132374, 1973
- 8. Fox, Charles H., Jr.; and Huffman, Jarrett K.: Calibration and Test Capabilitics of the Langley 7- by 10-Foot High-Speed Tunnel. NASA TM X-74027, 1977
- 9. Gillis, Clarence L.; Polhamus, Edward C.; and Gray, Joseph L., Jr.: Charts for Determining Jet Boundary Corrections for Complete Models in 7 x 10 Foot Closed Rectangular Wind Tunnels. NACA ARR L5G31, 1945
- 10. Pope, A.; and Harper, J. J.: Low-Speed Wind-Tunnel Testing, John Wiley & Sons, Inc., New York, N.Y., 1966
- 11. Braslow, Albert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distribution Roughness Particles for Boundary-Layer Transition at Mach Number From O to 5. NACA TN 4363, 1958
- 12. Henderson, William P.: Studies of Various Factors Affecting Drag Due to Lift at Subsonic Speeds. NASA TN D-3584, 1966
- Tulinius, J.: Unified Subsonic, Transonic, and Supersonic NAR Vortex Lattice. Rep. TFD-72-253, Rockwell International Corporation, 1972

- 14. Grantham, William D.; Nguyen, Luat T.; Deal, Perry L.; Neubauer, M. J., Jr.; Smith, Paul M.; and Gregory, Frederick D.: Ground Based and In-Flight Simulator Studies of Low-Speed Handling Characteristics of Two Supersonic Cruise Transport Concepts. NASA TP 1240, 1978
- 15. Coe, Paul L., Jr.; and Gilbert, William P.: Application of Low-Speed Aerodynamic Characteristics of Highly Swept Arrow-Wing Configuration to Supersonic Cruise Tactical Fighters Designs. AFFDL-TR-77-85, Air Force Flight Dynamics Laboratory, vol. I, July 1972.
- 16. Etkin, Bernard: Dynamics of Flight Stability and Control. John Wiley & Sons, New York, N.Y., 1959
- 17. Grafton, Sue B.; Chambers, Joseph R.; and Coe, Paul L., Jr.: Wind-Tunnel Free-Flight Investigation of a Model of a Spin Resistant Fighter Configuration. NASA TN D-7716. 1974
- 18. Ribner, Herbert S.: The Stability Derivatives of Low-Aspect-Ratio Triangular Wings at Subsonic and Supersonic Speeds. NACA TN 1423, 1947
- 19. Campbell, John P.; and McKinney, Marion O.: Summary of Methods for Calculating Dynamic Lateral Stability and Reponse and for Estimating Lateral Stability Derivatives. NACA TN 2409, 1951

利数

•

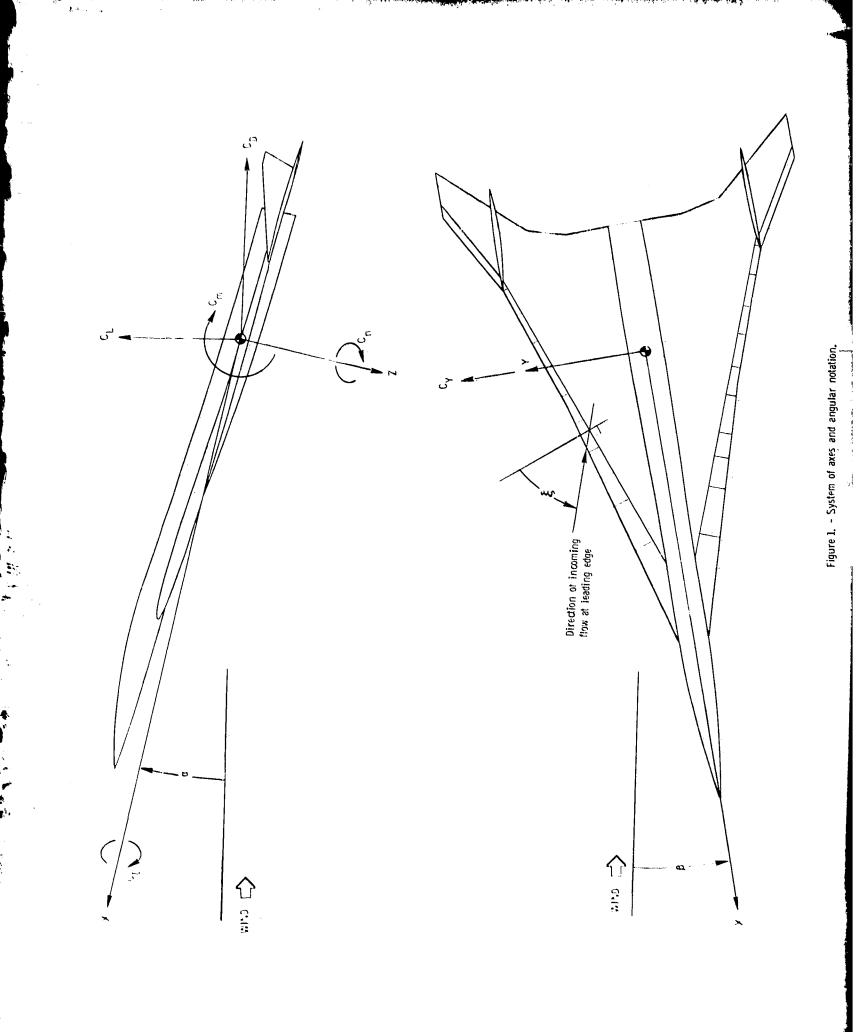
ORIGINAL PAGE IS

Table

Dimensional Characteristics of Model

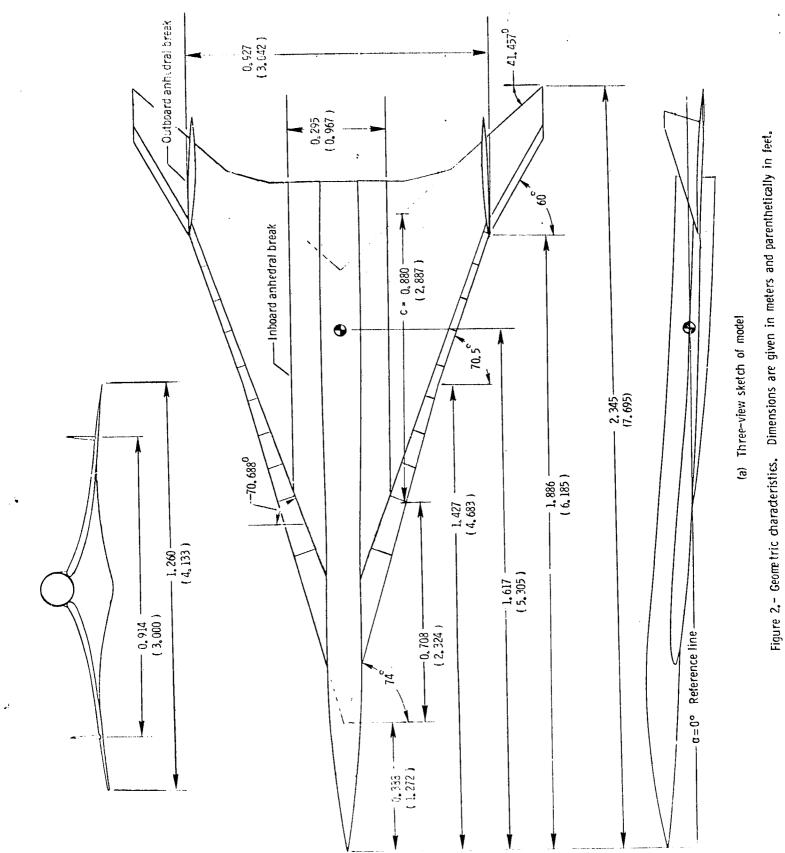
....

.

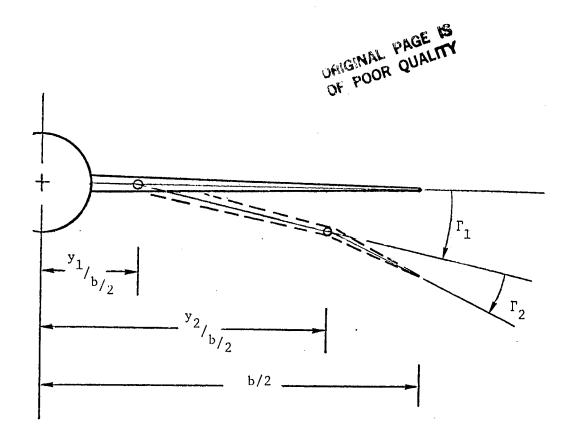

W	i	n	α	•
•••		••	• •	٠

.

•


4

	Reference and $-\frac{1}{2}$ (c+2)	
	Reference area, m^2 (ft ²)0.834 Gross area, m^2 (ft ²)0.919 Span, m (ft)	(8 972)
	Gross area, m^2 (ft ²)	(0, 0, 0)
	Span, m (ft)	(9.669)
	Root chord, m (ft)	(4.133)
	Root chord, m (ft)	(5.492)
		10 00-1
		12 106)
	At body station 0.388 m (1.272 ft)	
	At body station 1.427 m (4.683 ft) At body station 1.886 m (6.185 ft)	•••/4.0
	At holy station 1.926 m (6.105 c)	
	At body station 1.886 m (6.185 ft)	60.0
v.		
V E	ertical fin (two):	
	Area, m^2 (ft ²)	(0 407)
	Span, m (ft)	(0.437)
	Root chord m (ft)	(0.350)
	Root chord, m (ft)	(1.069)
		10 1001
	Leading-edge sweep, deg	73 1

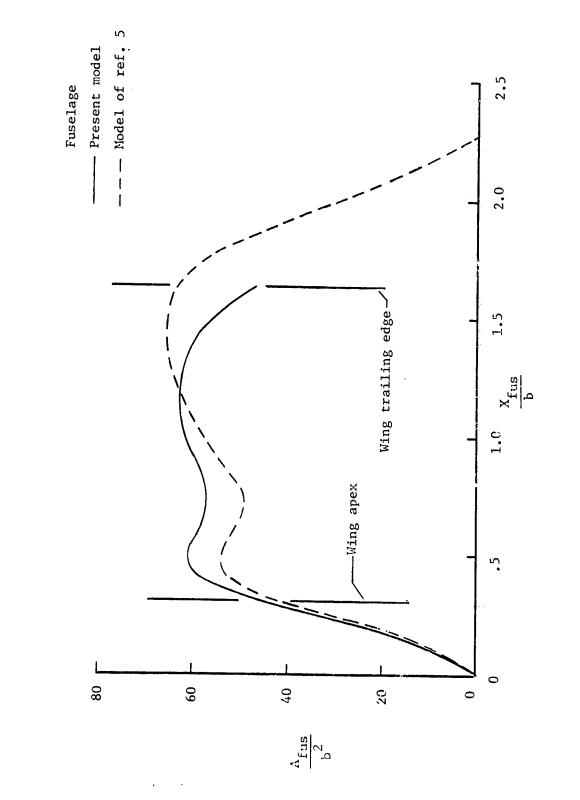

• •<u>:</u> :: · ·

١.

•

*

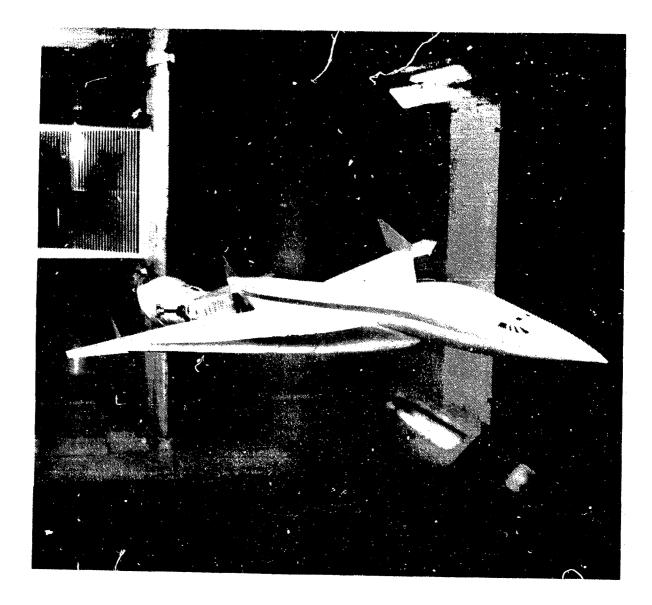
1


~

۰.

.

(b) Sketch showing anhedral angles Figure 2.- Concluded.

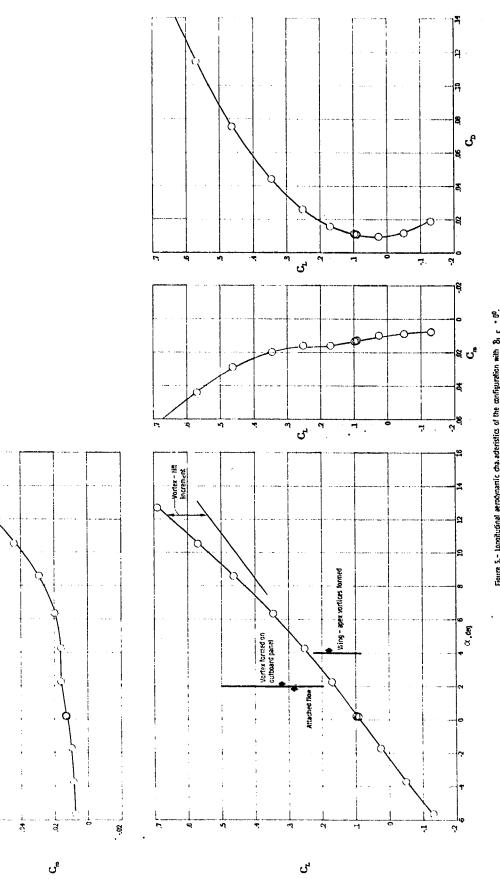


....

4

^

1. 1.

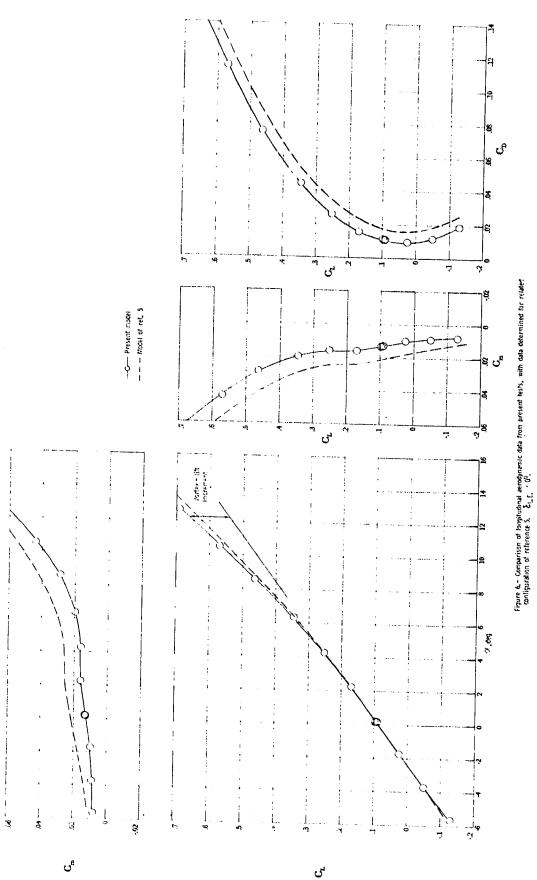

•

4

14

Figure 4.- Chotograph of model in Engley 7- be lawsoot high-speed tunnel.

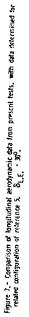
ORIGINAL PAGE IS OF POOR QUALITY


4

8

Figure 5.- Longitudinal zerodynamic characteristics of the configuration with ϑ_{LE} - ϑ^0


يلد م

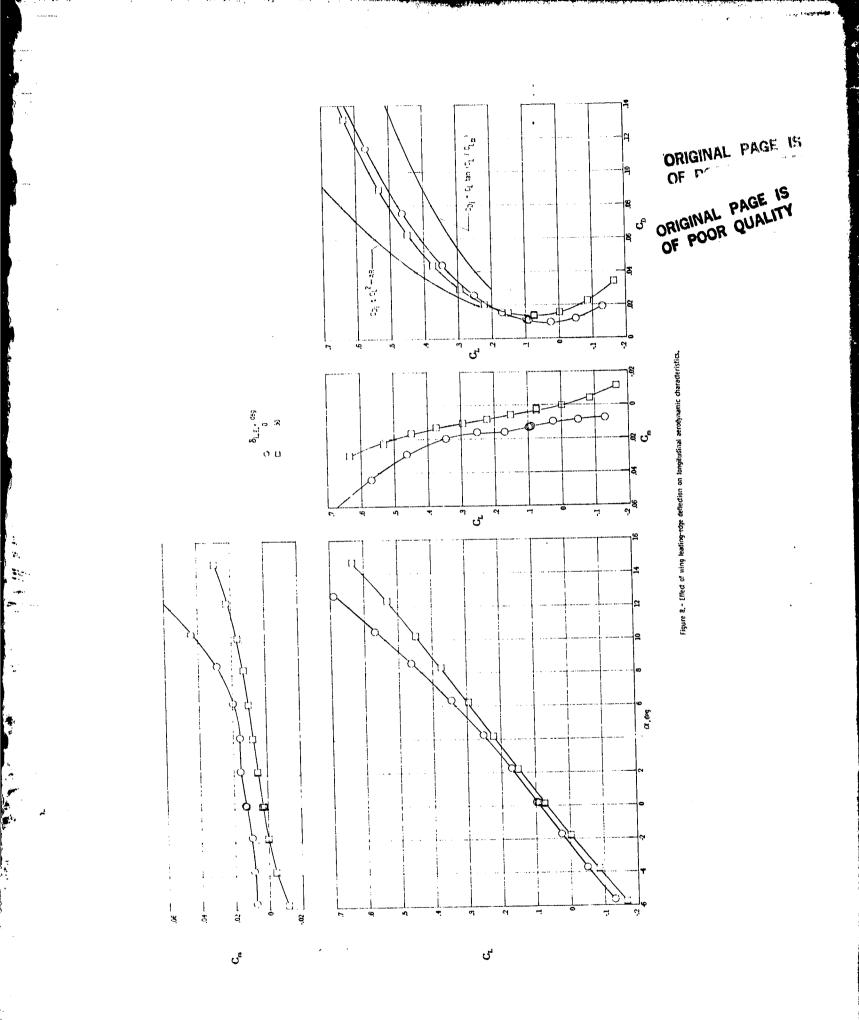

ORIGINAL PAGE IS

·...

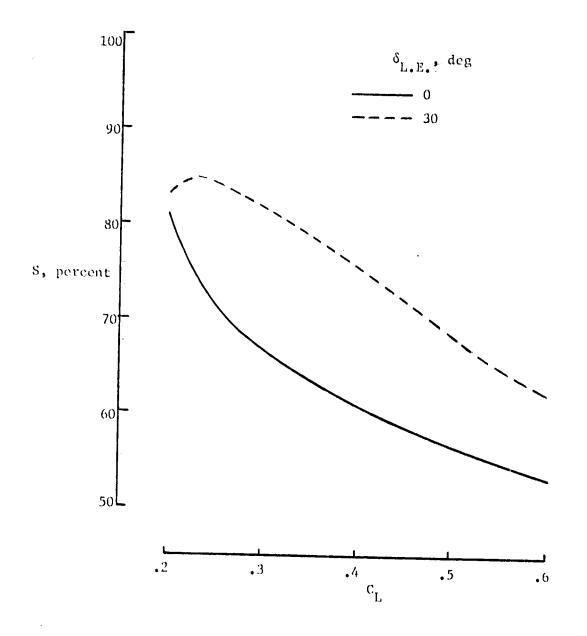
*

ర్

8

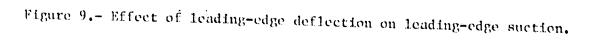

. !

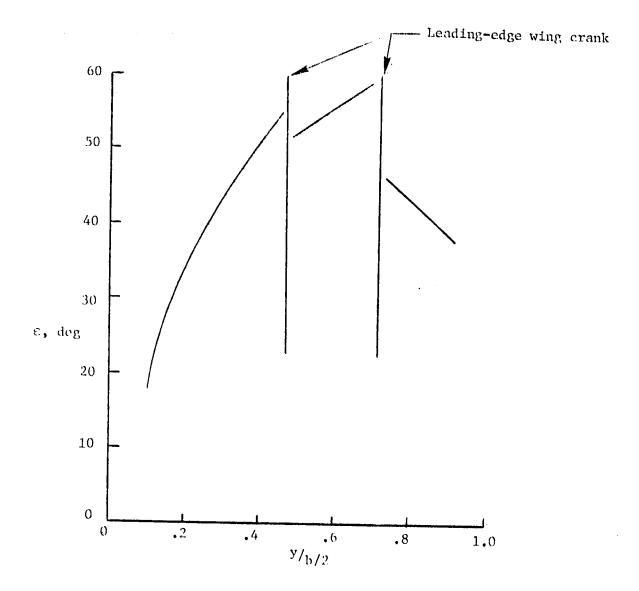
.


ŧ

.....

ۍ ن

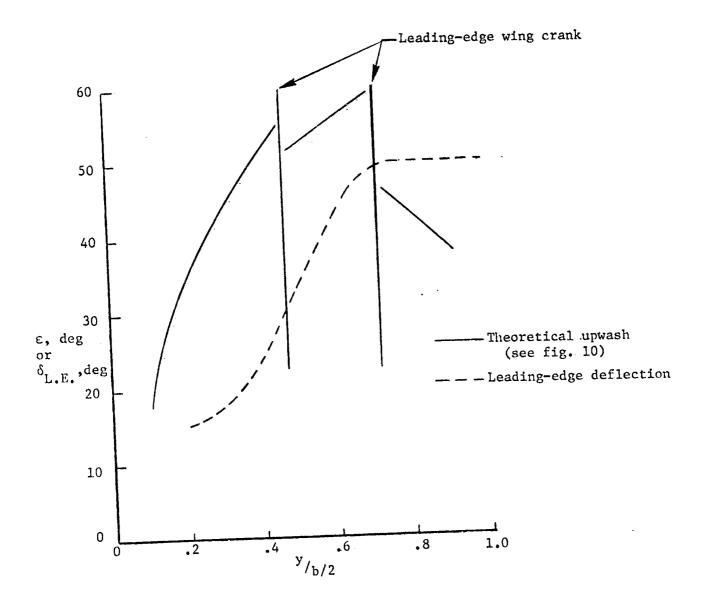


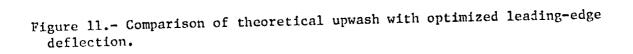

· · ·

...

١.

•


1


.

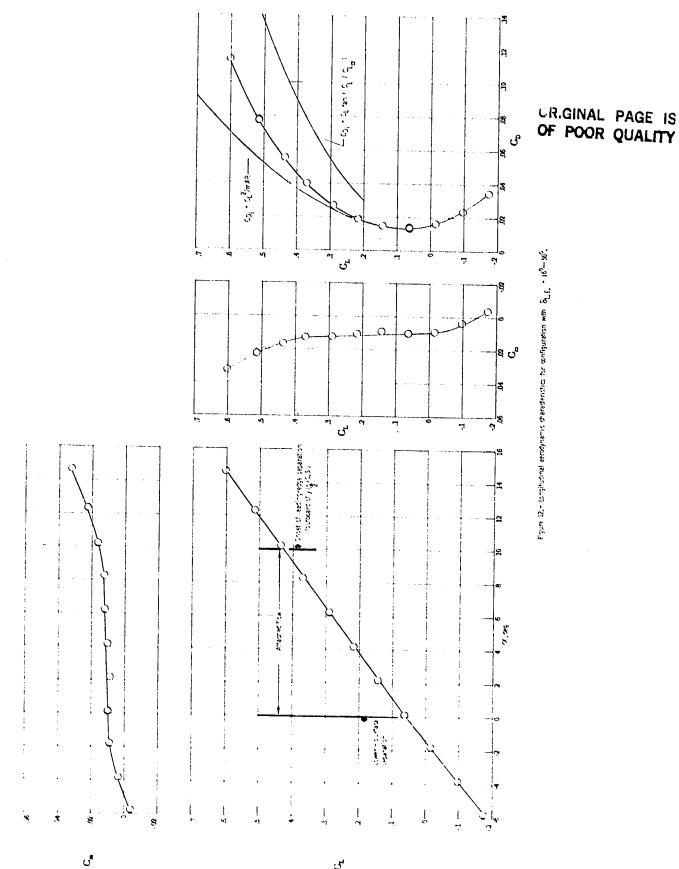
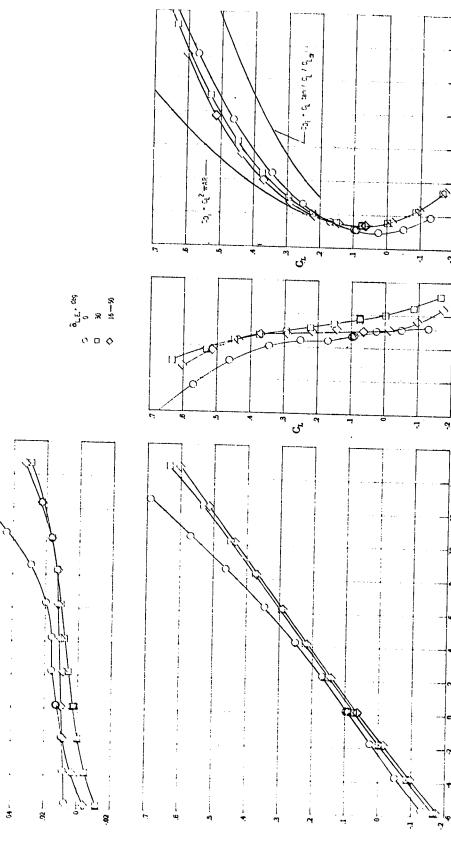

4

Figure 10.- Variation of theoretical upwash with nondimensional semispan. Theory based on vortex-lattice computational model. α -10° (ref. 5).


.

4

.... *

ىن

-

 ${
m Figure~13}$ - ${
m Effect}$ of wing leading-edge deflection on bingitudinal zerodynamic characteristics.

ഗ്

(AL

ņ

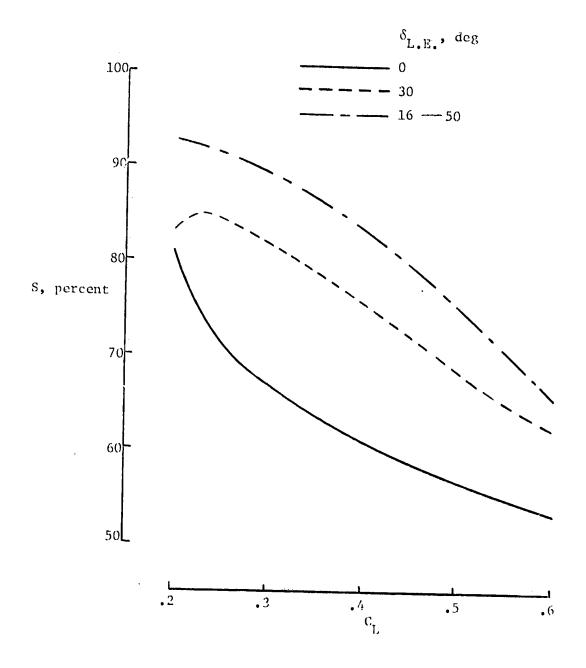
ەن يە

18

0

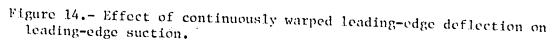
5

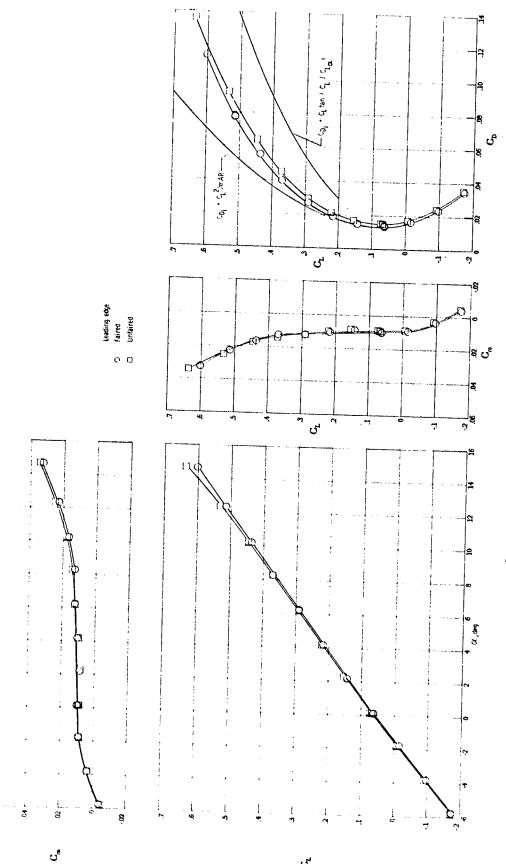
ų


1

లో

, 8

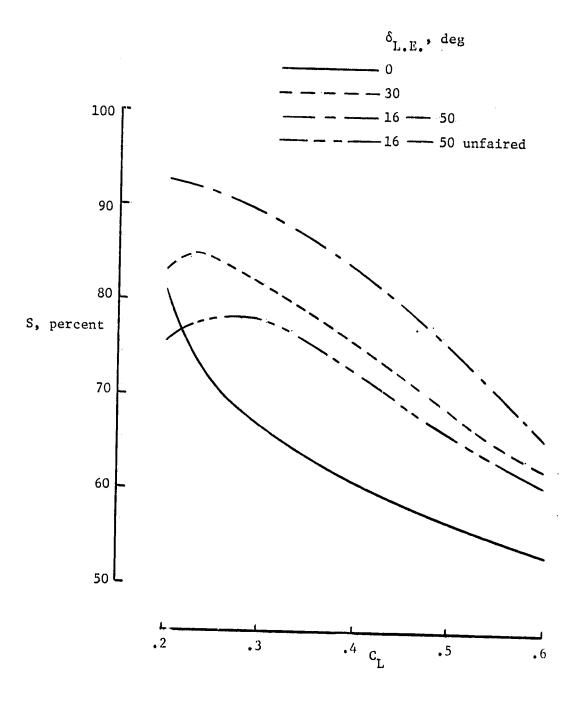

÷


പ

.

۰.

1

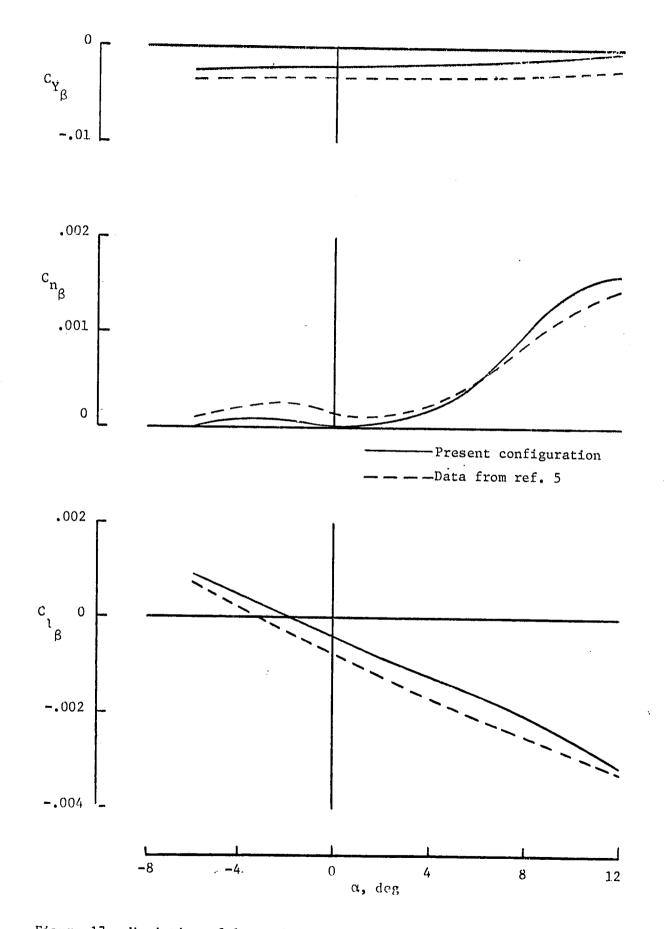

4

~

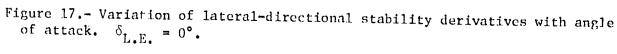
3

ų Į 'n Figure 15.- Filed of removing fainings between exjected segments of continuously warped leading-edge. $\delta_{\rm LE}$, 18 $^{\rm con-50}$

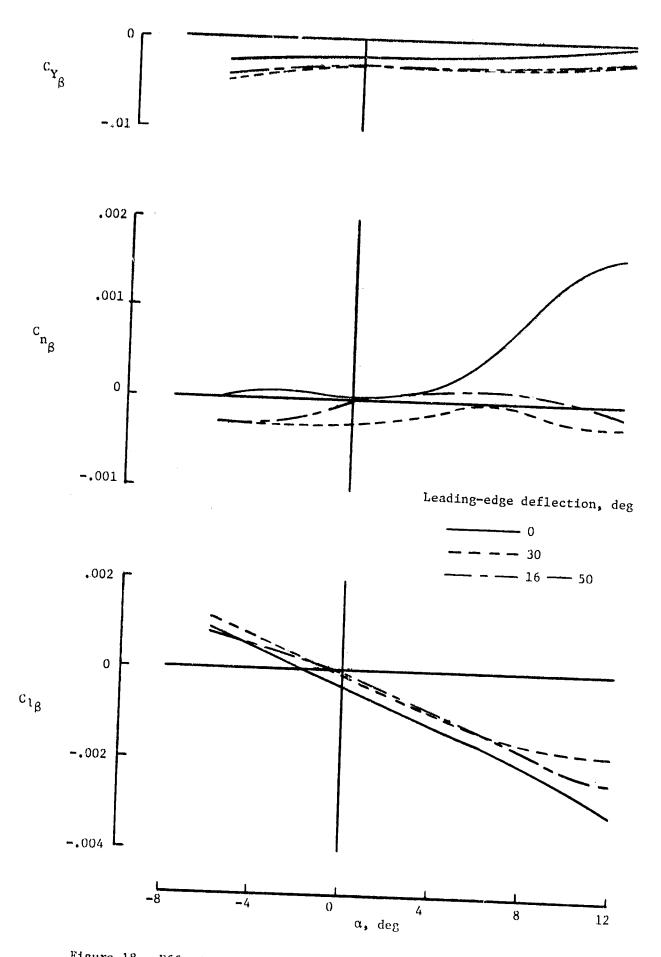
പ



. .


•

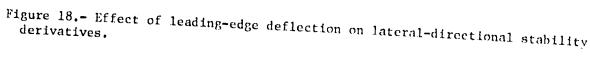
\$


Figure 16.- Effect of removing fairings from adjacent segments of continuously warped leading edge.

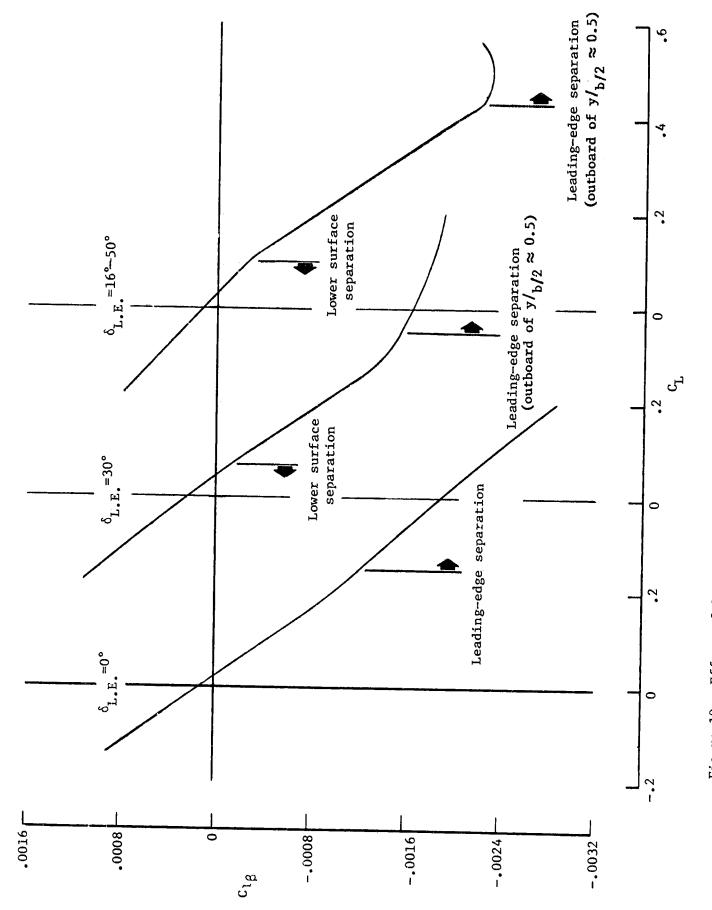
•

1. 10 10 1

.....

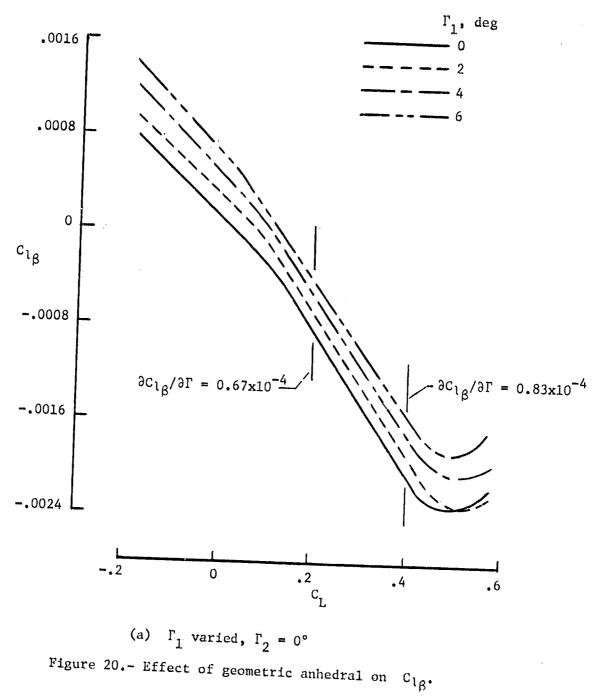

. .

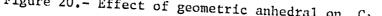
E.

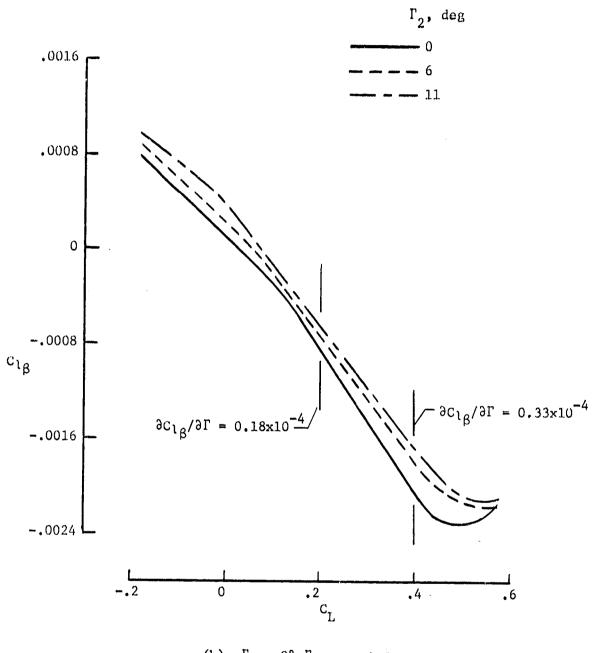

-

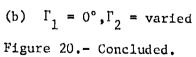
`**.**.

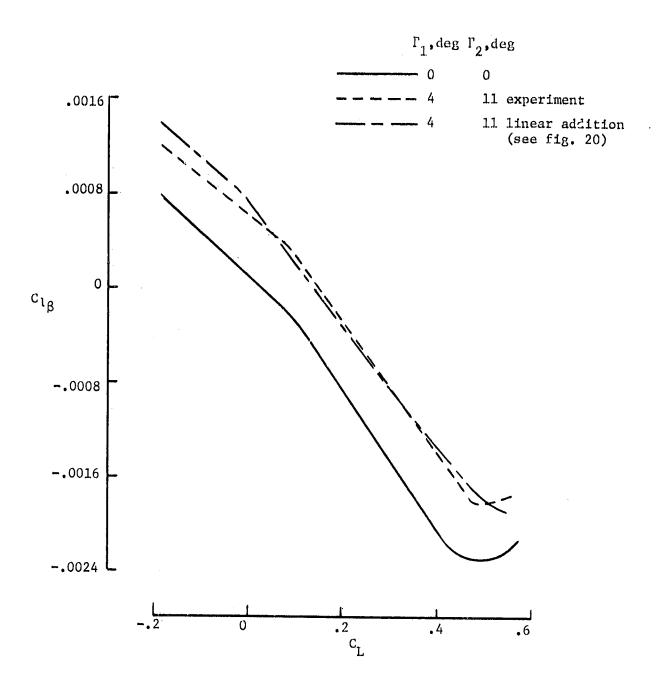
 ··· •


.


•

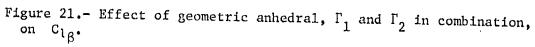

÷.

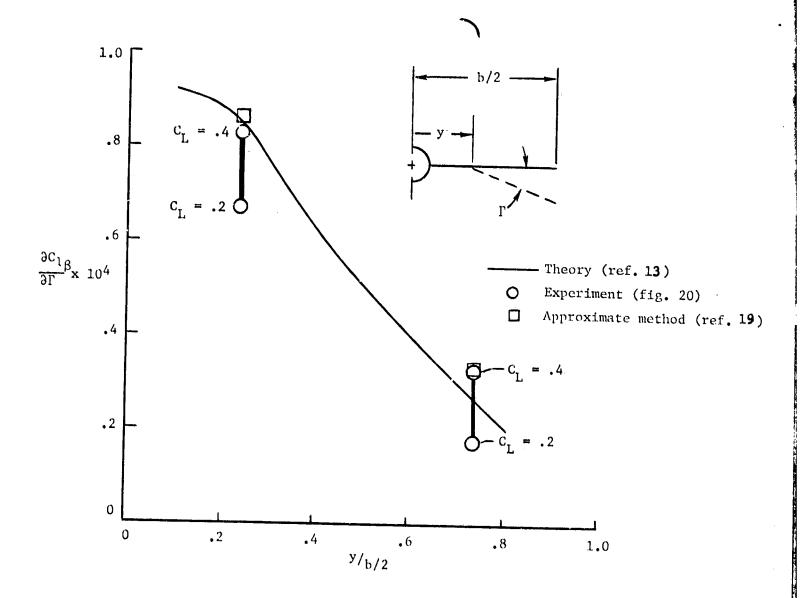

•



<u>.</u>

4


.


17

٠.

4

្តែ

₹.

•

ŧ

.

Figure 22.- Values for $\partial C_{1\beta}/\partial \Gamma$ obtained by inclusion of additional geometric anhedral at span station $y/b/2^*$

DATA SUPPLEMENT

i ne	symbols used in the data tabulation are defined as follows:
ALPHA	angle of attack, deg
BETA	angle of sideslip, deg
CD	drag-force coefficient; stability_axis
CL	lift-force coefficient; stability axis
СМ	pitching-moment coefficient; stability axis
CRM	rolling-moment coefficient; body axis
CY	side-force coefficient; body axis
СҮМ	yawing-moment coefficient; body axis

1 <u>:</u> .

:

4

si.

Run	β,deg	δ _{L.E.} ,deg	Γ _l ,deg	Γ ₂ ,deg
1	0	0.	0	0.
2.	5			
. 3	-5			
. ц	-5	30		
5	5			
5 6	0.	l.		
12	0	16-50		
13	5			
14	-5		ļ,	
18	· 0		6	
19	0 5			
20	-5	.		
21	-5 5 .		4	
22	5			
23	0			
24	0			11
25	5			
26	-5			t t
27	-5		2	0
28	·5	r		
29	0			
30	0.		0	11
31	5			
32	-5			
33	-5			6
34	5			
35	0			
39	0	16-50 unfaired		0

• ,

2

TABLE S-1 TEST. PROGRAM

TABLE S-2.- TABULATED DATA

ORIGINAL PAGE IS OF POOR QUALTY

						N ¹ ¹ ¹		
			NASA LA	NGLEY		- .		
TES	T 59					7 X 10	HIGH SPEED	TUNNEL
	1 24	RUN 1						
	BETA.	ALPHA.	CL	~~				
	∽ •Úb	•17	.0906	CD	CM	CRM	CYM	CY
	08	-5.04	-1296	.0110	•0128	0003	0003	
	-•05	-3.72		.0189	•0078	0010	0005	.0009
	07	-1.72	0493	.0118	4300.	0006		.0018
	6	•19	.0256	.0097	•0098	0003	0005	.0015
	06	2.25	•0939	•0110.	.0131	• 0003	0003	.0010
	05		.1700	.0156	.0160		0003	•.0014
	05	4.25	•2521	+0260	•0160	.0000	0002	+0015
	04	6.34	• 3456-	.0442	•0198	.0001	0000	.0006
		e • 57	• 46 3 3	.0754		• 0003	•0002	.0008
	04	10.51	• 5700	.1142	.0290	•0008	.0005	.0025
	03	12.69	•6907	.1667	•0441	•0001	.0011	.0034
	03	14.74	.8019	•2251	.0625	0001	•0014	.0048
	03	15.10	.8195		.0850	0008	.0016	•0064
	07	.19	.0976	-2356	•0893	0007	.0016	
-			• • • • • •	•0114	•0133	0001	0002	.0065
TEST	59	RUN 2						.0025
	BETA	ALPHA	-					
	4.90		CL	ĊD	CM	6 .5.4	_	
	4.92	•15	.0926	.0107	•0130	CRM-	CYM	CY
	4.91	-5.72	1304	.0193	•0054	0031	.0001	0101
	4.91	-3.75	0468	.0117	•0074	•0031	0004	0113
	4.90	-1.75	•0268	.0095		.0020	0001	0100
		•17	• 0956	.0108	.0092	0006	.0001	0094
	4.68	2.23	.1706	.0158	•0134	0032	.0002	0099
	4.86	4.24	.2568		•0159	0048	.0004	
	4.81	6.33	.3497	•0267	•0181	0057	.0012	0099
	4.77	٤.43	.4559	•0457	•0229	0087	.0033	0116
	4.72	10.45	• 5507	.0742	.0329	0111	•0064	0069
	4.67	12.67		.1087	.0462	0137		0048
	4.01	14.76	•6726	.1612	•0655	0179	.0083	0024
	4.60	15.01	•7923	•2228	.0877	0209	•0089	0007
	4.90	•15	.8022	·2295	.0905		.0094	0010
		•15	•0996	.0112	.0136	0216	•0095	0000
TEST	29	RUN 3				÷.0031	.0001	0093
		RUN 3						
	8 E T A							
	-5.02	ALPHA	CL	CD	• •			
	-5.08	• 2 4	•0918	.0113	CM	CRM	CYM	~~
		-5.63	1305	.0195	•0123	.0023	0005	CY
	-5.06	-3.64	0474		.0052	0049	0006	.0100
	-5.05	-1.66	.0246	.0122	.0077	0028	0008	•0136
	-5.02	•26	.0921	.0102	•0094	0001	0007	.0120
	-4.99	2.32	•1677	.0113	.0121	.0024	0006	.0106
	-4.96	4.36	•2520	•0161	.0147	.0035		•0098
	-4.91	6.42	•3476	.0270	.0166	+0053	0005	•0102
	-4.85	8.54		.0459	.0224	.0065	0005	•0104
	-4.79	10.57	•448 <u>1</u>	•0741	.0318	.0092	0026	·0C78
	-4.73	12.78	• 5554	+1111	.0444	•0119	0043	.0060
	-4.66	14.86	.6732	•1634	.0629		0063	.0042
	-4.65	15.21	•7961	+2248	.0839	•0143	-+0060	+0051
	-5.02	•26	.8150	.2359	•0904	.0198	֥0056	.0037
		• 6 0	•0941	.0116	.0126	•0196	0054	.0043
TEST	59	RUN 4			•••••	.0022	0007	•0103
		RUN 4						
	BETA							
	-5.03	ALPHA	CL	CD				
	-5.10	•20	.0751	•0141	CM	CRM	CYM	• .
		-5.71	1607		•0023	.0003	.0008	CY
	-5.08	-3.72	0777	•0336	0140	0061	.0008	.0146
	-9.06	-1.70	.0028	•0221	0061	0037	•0008	.0250
	-5.03	.23	•0784	•0158	0014	0017		• 0213
	-5.00	2.32	•1564	.0145	.0024	.0001	.0011	+017 <u>2</u>
	-4.96	4.30	• 2282	•0164	.0054	.0031	.0008	•0159
	-4.92	6.37		.0217	.0092	+0053	.0004	.0142
	-4.H8	8+45	.3049	.0317	.0110	•0073	.0000	.0149
	-4.83	10.37	.3870	.0471	•0130		0003	.0162
	-4.77		• 4565	·0655	.0173	.0072	.0014	•0158
	-4.71	12.53	·547U	·0956		.0080	•0015	•0129
	-4.70	14.51	+6230	1285	+0237	+ 0072	.0017	
	-5.04	14.05	+6366	•1348	• 0 3 2 3	+ UC P 1	.0027	•0129
	2 4 J 7	•24	.0886	•0150	•0333	4800.	+0029	.0150
				• • • • • •	• C 0 7 7	.0003	+0009	•0143
							****	.0174

ľ

ļ.

.

.

*

•

TABLE S-2.- CONTINUED.

ene a singerbrigger name in de se an

والاستقارب فالمروات المتحد والمتعار والالالمان

.

*** *

Service and the service of the servi

ļ

ļ.

۱. ۳

*

•

			NASA LAN	IGLEY		7 X 10 H	IIGH SPEED TU	INNEL
Τεςτ	59	RUN 5						
	ΒΕΤΑ	ALPHA	CL	CD	CM	CRM	CYM	CY
		•11	.0780	.0140	.0026	0009	0017	0133
	4 • 93	-5.79	1598	.0336	0140	.0048	0020	0220
	4.93	-3.82	0789	.0221 .	0066	.0025	0019	0181
	4.92	-1.80	.0026	.0158	0006	.0009	0019	0151
	4.91	•14	•0784	.0137	.0027	0007	0017	0138
	4.89	2.21	.1543	+0155	.0060	0034	0011	0119
	4.87	4.20	.2264	.0209 -	•0089	0050	0011	0134
	4.63	6.27	.2987	,0290	.0121	0065	0000	0128
	4.80 -	e.30	.3754	.0428	.0154	0081	0003	0108
	4.76 4.71	10.27	.4534	.0626	.0164	0102	0006	0110
	4.65	12.47	•5450	.0939	.0223	0089	0008	0097
	4.91	•12	•6223 •0780	•1284 •0141	•0332 •0022	0107	•0004 -•0018	0101 0134
TEST	h 0							
16.21	59	RUN 6						
	BETA	ALPHA -		CD	CM	CRM	CYM	CY
	06	•11	• 0738	.0137	.0027	0002	0003	.0015
		-5.76.	1653	•0340:	0114	0010	0006	.0029
	30	-3.79	0854	.0226	0042	0008	0004	.0026
	07 06		0013	.0156	.0001	0002	0004	.0014
	06	•13 2•20	.0750	.0135	.0023	0002	0003	.0015
	05	4.19	• 15 16.	.0153	.0058	•0000	0004	.0016
	04	. 6.24	•2224	• 0206	.0084	.0010	0004	.0019
	04	8.31	• 3744	•0296 •0439	.0107 .0131	.0013	0005	.0022
	04	10.24	• 4488	.0627	.0165	.0005 0011	.0002	.0016
	04	12.36	.5316	.0897	.0227	0012	.0010 .0022	•0033
	03	14.68	.6338	.1318	.0296	0030	.0033	•0064 •0031
	- •ü6	•11	.0750	.0140	.0033	0001	0003	•0015
TEST	59	RUN 12						
	BETA	ALPHA	CL	<u></u>	.			
	06	•11	.0632	CD •0138	CM	CRM	CYM	CY
	08	-5,75	1733	.0347	.0101 0038	.0009 0002	0001	.0011
	08	-3.81	0968	.0235	•0036	.0002	.0001	.0012
	07	-1.78	0151	.0164	.0091	•0007	•0004 •0002	+0011
	06	•12	.0629	.0135	.0100	.0007	0001	•0007 •0008
	06	2.18	.1432	.0149	.0089	.0009	0002	•0019
	05	4.17	•2168	.0190	.0105	.0006	0003	.0019
	05	6.23	.2905	.0269	.0123	.0011	0002	.0023
	04	8.28	.3703	.0399	.0127	.0009	.0001	.0034
	04 03	10.21	• 4366	.0552	•0166	•0002	+0014	.0060
	04	12.33 12.32	.51.45	.0773	.0227	.0003	.0007	•0076
	02	14.64	•5144	.0776	.0228	0000	.0006	.0085
	06	•12.	•6022 •0640	•1138 •0140	•0327 •0100	.0012 .0011	•0003 -•0001	•0C78 •0008
TEST	59	RUN 13					•••••	
	BETA	ALPHA	CL.	CD	C r.	6 D H	* • • • • •	
	4.90	•10	.0651.	.0142	•0095	C R M • 0004	C YM	CY
	4.93	-5.87	1744	.0350	0066	.0040	.0001 0012	0136
	4.93	-3.90	0967	.0237	.0016	.0027	0012	0199
	4.92	-1.89	0137	.0167	.0070	.0011	0010	-+0165 -+0135
	490	•06	.0620	.0141	.0099	.0009	.0001	0140
	4+88	2.09	•1410	.0146	.0103	0022	.0002	0131
	4.86	4.11	+2157	.0187	.0113	0050	0000	~. 0140
	4.83	6.15	+2932	.0267	+0116	0064	+0008	0149
	4.80	8.20	.3621	.0381.	.0143	0087	.0007	0123
	4.76	10+16	•4393	.0555	.0170	0110	0001	0108
	4.71 4.65	12.30	.5.243	.0823	.0237	0111	0011	0066
	4.90	14.62	•6164	.1168	.0352	0122	0019	.0015
	7170	•U1	.0620	•0143	•0097	•000 7	.0001	0131

TES	1		NASA LA	NGLEY		7 X 1	0 HIGH SPEED	* (1)11. * .
14.3	1 54	RUN 14.				• • •	o inton speed	TUNNEL
	8ETA -5.03	41 bhy • 50	CL • 0656	CD	CM	CRM	C 2010	
	-5.09	-5+73	1703	•0143	•0084	.0005	CYM 0001	C Y.
	-5.08 -5.06	-3.75	0906	• 0346 • 0234	0067	0036	.0012	•0135
	-5.03	-1.74	0113	•0166	.0009	0020	.0013	•0206
	-5.00	.18	.0649	•0141	•0066	0005	.0008	•0168 •0142
	-4.96	2.26	.1455	.0154	•0082	.0006	0001	•0142
	-4.92	4.28 6.31	•2178	.0196	•0087 •0108	+ OC 2H	0006	•0129
	-4.87	8.37	•2934	.0280	.0122	.0051	0007	.0142
	-4.82	10.31	• 3678	• 0404	•0137	•0068	0007	.0158
	-4.76	12.44	•4386 •5202	.05t0	.0167	•0088 •0110	0004	+0158
	-4.69	14.81	• 6 2 8 9	.0813	.0232	.0103	0001	.0127
	-9.03	•19	• 06 70	•1241	•0331	.0066	•0008	+0117
				•0144	.0087	.0001	•0005 -•0001	.0095
TEST	59							•0142
		RUN 18						
	PETA							
	Ú7	ALPHA	CL	C D	C 14			
	09	•13 -5•70	•0686	.0145	CM • 01 03	CRM	CYM	CY
	08	-3.76	1606	.0344	0027	.0002	.0001	•0014
	07	-1.77	0811	• 0237	•0036	0003	.0005	.0022
	07	•18	0034	•0171	.0083	•0006	.0007	.0014
	06	2.23	•1539	.0146	.0101	•0006 •0003	•0006	.0009
	5پ•*	4.22	•2262	•0163	.0097	•0006	.0001	.0020
	05	6.26	.2987	•0210	•0116	•0004	0001	.0025
	04 04	8.30	• 3773	• 0 2 9 2	.0131	.0006	0002 0003	•0029
	04	10.24	.4445	•0426 •0583	•0136	.0007	•0001	• 0044
	U3	12.37	•5186	.0806	•0185	.0002	.0013	• 0044
	07	14.63	•6626	.1142	•0253	0000	.0009	•0075
		•15	•0791	.0153	•0344 •01ú3	.0001	0002	•0082 •0089
T				•	•0103	•0003	.0001	.0032
TEST	59	RUN 19						
	BETA	ALPHA	A .					
	4.90	•16	CL	CD	CM			
	4.93	-5.79	•0676 -•1655	+0145	•0099	CRM	CYM	CY
	4.93	-3.82	0865	.0344	0050	•0030 •0067	• 00 05	-+0166
	4.92 4.90	-1.81	0085	.0234	.0012	•00F2	0007	0242
	4.98	•10	• 0651	•0169 •0146	•0069	.0040	0008	0205
	4.86	2.18	.1429	•0156	•0099	.0028	0004 .0005	0174
	4.83	4•19 6•23	•2160	•0196	•0112	.0000	•0009	0159
	4.80	8.27	•5406	.0274	•0125	0025	.0009	0155
	4.76	10.23	.3605	.0387	•0125 •0166	0044	.0016	0160 0170
	4.71	12.35	•4359 •5141	•0558	.0204	0065	.0012	0164
	4.05	14.61	•6136	•0811	.0266	0089 0097	+0005	0142
	4.90	•10	•0650	•1196	.0364	0097	0011	0094
				•0146	•0098	+0032	0016	0029
TEST	59 R	UN ZU					.000+	0168
	ΡΕΤΑ							
	-5.03	ALPHA	CL	CD				
	-5.09	•18 -5•71	•0616	•0142	40	CRM	CYM	
	-2.08	-3.72	1693	.0348	•0085	-+0019	0002	CY
	-5.06	-1.73	0463	.0236	-+0050 +0014	0055	•0016	•0136
	-1.03	+21	6140 . 0645	.0170	•0054	0040	. 3016	•0211
		2.25	•004 <u>0</u> •1414	• (144	• COr6	0032	.0008	•0170 •0149
	-4.90	4.27	• 2124	.0155	.0094	0015	0001	•0140
	-4.92	6.31	·2850	•0196	•0116	•0021	0007	•0132
	-4.82	H + 36	.3595	•0274 •0392	•0130	•0043	0000	.0141
	-4.76	10.31	• 4330	+0558	.0160	• CC1 B	-+0011	.0162
	-4.64	12.46 14.78	+5129	• 0 + 0 0	•0193	4300+	0004	.0173
	-1.03	+19	•6129	•1193	+02±1	+0084	+0001	• 0144
		• 4 *	• 0ë C1	.0144	+0325 +0084	• CC - 1	•0013	•0124
					• V V C •	-+0016	-+0001	+0103
	opicil	NAL PAGE	S					• 01 30

ORIGINAL PAGE IS OF POOR QUALITY

. . .

.____....

.

a 1 ,

. .

iii th

÷

•

· · ·

.

-

TABLE S-2.- CONTINUED.

			NASA	Y		7 ¥ 10 H	TGH SPEED TU	NNEL
τεςτ	59	RUN 21						
	BETA	ALPHA	c L \	CD	CM	CRM ·	CYM	CY
	-5.03	.19	.0675	.0142	.0083	0014	0001	.0151
	-9.10	-5.70	1617	.0337	+.CO+5	-+0(44	.0017	.0220
	-5.08	-3,71	0828	.0228	.0008	0035	.0018	.0178
	-5.06	-1.70	0032	.0164	.0061	0022	.0009	.0157
	-5.63	.21	.0713 \	.0144	.0081	0011	0001	.0157
	-5.00	2.26	.1518	.0161	.0092	.0014	0007	.0150
	-4.96	4.28	.2250	.0267	.0114	.0035	0008	•0169
	-4.92	6.31	.2973	.028A	.0119	.0048	3010	.0182
	- 4,84	8.42	•3740	.0418	•0157	.0064	0005	.0196
	-4.82	10.34-	.4475	.0585	.0181	•0098	0005	+0152
	-4.76	12.48	. 5272	.0835	.0742	.0095	.0004	.0128
	-4.69	14.62	.6309	1251.	.03?3	.0665	.0009	.0101
	-2.03	• 2 2	.0774	.0148	.0081	0009	•C001	.0165
TEST	59	RUN 22						
	BE TA	ALPHA	CL .	\ cp	CM	CRM	CYM	CY
	4.90	.11	.0688	• 143	.0093	.0017	.0003	0145
	4.93	-5.77	1639	• (\337	0058	.0058	0010	0217
	4.93	-3.79	0952	•0831	•0019	.0640	0011	0179
	4.92	-1.78	0030	·01/45	.0070	•0056	0006	0156
	4.90	•14	.0686	.01 1	.0090	.0019	.0004	0146
	4.88	2.21	.1482	.015/3	.0104	0009	.0007	0139
	4.86 4.83	4.25	.2251	.015%	.0121	0033	.0007	0152
	4.8U	6•27 8•32	.2971	• 02 7E	.0121	0056	.0012	0146
	4.76	16.30	•3711 •4451	•0397 •0576	.0160	0074	.0012	0157
	4.71	12.40	.5232	.0836	.0183 .0253	0095 0098	.0007 0009	0121
	4.65	14.62	6118	.1185	.0371	0109	0019	0085 0013
	4.90	•15	.0733	.0144	.0101	.0015	.0003	0140
							• • • • • • •	• (* 1 * (*
1 E S T	59	RUN 23						
	BETA	ALPHA	CL	CD	\ CM	CRM	CYM	C V
	06	•11.	.0620	.0134	1.0092	.0005	.0001	CY 0000
	08	-5.76	1710	.0341	.0026	0002	.0004	•0004
	80	-3.79	0935	.0230	\0042	.0003	.0004	0000
	07	-1.78	0125	.0162	.0017	.0005	.0003	.0003
	06	•14	.0640	.0137	. 1092	.0007	.0002	.0003
	06	2.22	.1460	.0146	• 0/091	.0007	0001	.0004
	05	4.18	.2165	.0188	•0108	.0004	0001	.0008
	- •04	6.22	.2858	•0264	•0124	.0011	0003	.0010
	04	8.33	.3708	• (397	.0133	.0007	.0002	.0021
	04	10.30 12.33	•4377 •5078	• C 5 5 0	.0177	.0002	.0015	.0041
	02	14.62	•5914	.0763 .1102	•0239	0001	.0004	.0057
	06	.12	• 06 35	•0132	•0336 •0092	.0015	0004	.0028
	••••	• 1 2	• • • • • • •	•0152	.0042	0000	.0001	.0005
1651	59	RUN 24						
	BETA	ALPHA	сı	CD	C٣	CFM	CYM	CY
	06	.13	.0674	.0139	.0096	.0006	.0000	.0009
	08	-5.70	1557	.0320	0060	0004	.0001	.0014
	US	-3.77	0443	.0724	.0027	-+0002	.0001	.0019
	07	-1.78	0071	•C163	.0678	.0003	.0002	.0013
	07	•13	.0693	•0138	•0094	.0005	.0000	.0011
	06	2.21	.1505	.0153	.0095	.0(02	0003	.0025
	05	4.18	.2189	.0195	•0110	.0005	0003	.0022
	05 	6.25	.2943	•0276	.0144	.0006	0002	+0025
	04 04	8+30 16 22	.3066	.0409	•0151	•000F	.0001	.0036
	04	16.22	.4370	+ C 5 6 5	•01c0	.0001	.0013	.0062
	J2	14.03	•5085 •5960	+0782 +1113	•C270	0005	.0006	• 2675
	7	•15	.074?	•0140	•0371 •0101	1000	0010	•0076
		• 1 2	• • • • •		• V ¥ V ¥	.0005	• 0003	.0022

•

). .~

J.

ij

NASA LANGLEY

4.__

2

ų

•...

7 X 10 HIGH SPEED TUNNEL

1 t S T	59	RUN 25						
	RETA 4.90 4.93 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92	ALPHA .1C -5.78 -3.83 -1.62 .C9 2.16 4.16 6.24 b.28 10.28 12.35 14.60 .C9	CL .0637 1591 0852 0076 .0636 .1421 .2145 .2900 .3629 .4363 .5120 .6003 .0658	CD 0138 0325 0226 0163 0137 0149 0149 0149 0272 0392 0566 0615 1163 0139	CM .0088 0082 0001 .0062 .0090 .0111 .0130 .0133 .0161 .0222 .0280 .0409 .0090	CPM .0037 .0061 .0052 .0043 .0036 .0011 0018 0063 0081 0075 0092 .0031	CYM 0017 0006 0006 .0019 .0020 .0015 .0026 .0024 .0019 .0008 0001 .0017	CY 0190 0228 0194 0181 0191 0179 0185 0185 0185 0185 0185 0161 0161 0161 0052 0179
TE ST	59	RUN 26						
	RETA -5.03 -5.09 -5.08 -5.05 -5.03 -5.00 -4.96 -4.98 -4.88 -4.81 -4.69 -5.03	ALPHA .19 -5.70 -3.72 -1.71 .20 2.26 4.30 6.31 5.38 10.44 12.46 14.79 .21	CL .0£35 1617 0857 0068 .0616 .1403 .2138 .2870 .3613 .4369 .5092 .6122 .0654	CD •0138 •C327 •0225 •C161 •0138 •0148 •0194 •0273 •0399 •0569 •0798 •1194 •C139	CM • COF1 • 01C0 • 00C4 • 0051 • 0C80 • 0069 • 0114 • 0136 • 0172 • 0209 • 0271 • 0370 • 0087	CRM U024 0053 0040 0027 0022 0000 .0026 .0040 .0053 .0082 .0091 .0062 0025	CYM 0016 .C010 .0000 0015 0019 0019 0019 0016 .C001 0016	CY •0171 •0225 •0185 •0168 •0168 •0160 •0166 •0166 •0176 •0139 •0089 •0170
TEST	59	RUN 27						
	8E TA -5.J3 -5.09 -5.08 -5.00 -5.00 -5.00 -4.92 -4.82 -4.82 -4.69 -5.03	ALPHA .19 -5.71 -3.73 -1.71 .24 2.27 4.30 6.33 8.41 10.34 12.49 14.83 .22	CL .0703 1632 0860 C045 .0740 .1531 .2264 .3C17 .3770 .4462 .5279 .6362 .0775	CD .0141 .0339 .0230 .0164 .0142 .0142 .0202 .0209 .0417 .0577 .0830 .1255 .0145	CM .0070 0075 .0010 .0062 .0077 .0086 .01C2 .0121 .0137 .0161 .0225 .0330 .0077	CFM 0008 0028 0015 0004 .0015 .CC4C .0050 .0070 .0093 .0101 .0062 0005	CYM 0001 .0015 .0016 .0010 0003 0005 0007 0006 0002 0004 .0001 .0004 0001	CY •0131 •0210 •0159 •0144 •0131 •0139 •0142 •0165 •0166 •0129 •0106 •0281 •0139
TEST	59	RUN 28						
	RETA 4.90 4.93 4.92 4.92 4.90 4.08 4.08 4.08 4.08 4.08 4.08 4.71 4.50 4.50	AL PHA .10 -5.80 -3.84 -1.84 .09 2.17 4.17 6.22 8.27 16.73 12.39 14.62 .(9	CL .0668 1659 0884 0076 .0673 .1476 .2190 .2981 .3698 .4433 .5234 .(1)1 .0672	CD • 0141 • 0341 • 0234 • 0168 • 0141 • 0151 • 0189 • 0271 • 0389 • 0566 • 0826 • 1174 • C141	CM .0091 -0066 .0016 .0065 .0084 .0104 .0110 .0115 .0137 .0157 .0224 .0253 .0019	CRM • 0013 • 0044 • 0033 • 0019 • 0015 • 0013 - 0044 - 0065 - 0088 - 0113 - 0112 - 0127 • 0010	CYM .0003 -0010 -0032 -0007 .0003 .0006 .0004 .0008 .0008 .0008 .0008 .0008 .0008 .0007 -000H -00013 .0002	CY 014C 0202 0164 0143 0141 0135 0142 0146 0149 0149 0149 0149 0149 0149 0009 0142
		af day in 38.	-					

ورجيته المتعاد

ALC: NOT THE REAL PROPERTY OF

n Mathematic

.

and the second product of the second s

			NASA LAN	GLEY		7 ¥ 10	HIGH SPRED T	TINNET
TEST	EN	RLN 29						
	RETA 06 08 07 06 06 04 04 04 04 04 04	AL-PHA 12 -5.76 -3.40 -1.78 14 2.18 4.20	CL .0656 1721 0921 0116 .0668 .1474 .2193 .2925 .3692 .3693 .5176 .5997 .0641	CD •0138 •0345 •0233 •0164 •0138 •0147 •0189 •0267 •0397 •0555 •0754 •1116 •0138	CM .0091 0041 .0037 .0076 .0097 .0094 .0109 .0114 .0157 .0220 .0310 .CC89	CRM .0007 0004 0005 .0007 .0003 .0003 .0002 .0001 0006 0009 .0002	CYM 0001 .0003 .0002 .0002 0000 0001 0003 0004 0004 0004 0003 0004 0003 0004	CY *.0001 .0008 .0009 .0002 .0007 .0010 .0006 .0024 .0051 .0051 .0070 .0061
					4 V V C 4	•0006	0001	0002
TEST	59	RL'N. 3C						
	BETA 06 08 08 07 06 05 05 04 04 04 04 04 04	ALPHA .12 -5.73 -3.78 -1.77 .15 2.20 4.26 6.25 8.30 10.25 12.37 14.64 .15	CL .0659 1628 0896 0084 .0688 .1489 .2213 .2925 .3716 .4395 .5129 .6013 .0728	CD .0136 .0333 .0230 .0163 .0138 .0194 .0194 .0272 .0408 .0566 .0781 .1132 .0138	CM .0088 0085 .0019 .0071 .0090 .0082 .0101 .0131 .0127 .0179 .0246 .0337 .0102	CPM .0002 0005 .0000 .0007 .0006 .0003 .0007 .0011 .0002 0007 0007 0003	CYM 0001 .0002 .0004 0000 0002 0003 0001 .0013 .0013 .0006 0011 0011	CY .0009 .0015 .0011 .0005 .0010 .0021 .0027 .0023 .0056 .0056 .0064 .0013
TEST	59	RUN 31						
	861 A 4.90 4.92 4.92 4.90 4.88 4.86 4.88 4.80 4.71 4.65 4.90	ALPHA .C9 -5.60 -3.81 -1.79 .15 2.18 4.21 6.24 8.32 10.27 12.44 14.63 .11	CL .0648 1613 0853 0060 .0692 .1462 .2191 .2950 .3712 .4419 .5249 .6105 .0686	CD •0136 •0329 •C225 •0160 •C136 •C146 •0186 •0270 •C396 •0569 •0843 •1183 •0136	CM .0081 0097 0009 .0054 .0058 .0096 .0112 .0121 .0153 .0188 .0265 .0377 .0051	CRM .0019 .0048 .0025 .0021 0012 0038 0051 0078 0078 0096 0116 .0021	CYM .0014 0006 0007 .0014 .0014 .0018 .0016 .0015 .0001 000P .0013	CY 0170 0212 0182 0169 0171 0160 0167 0178 0164 0148 0109 0C16 0177
TEST	59	RUN 32						
	BETA -5.03 -5.09 -5.09 -5.00 -5.00 -4.92 -4.92 -4.82 -4.63 -5.03	AL PHA .20 -5.71 -3.76 -1.72 .18 2.26 4.26 6.28 8.37 10.32 12.48 14.80 .17	CL .0666 1613 0859 0075 .C662 .1463 .2174 .2906 .3642 .4386 .5206 .6202 .0660	CD .0140 .0329 .0226 .0161 .0138 .0151 .0192 .0276 .0401 .0565 .0820 .1211 .C139	CM .0068 0107 0015 .0046 .0070 .0088 .0107 .0121 .0150 .0152 .0239 .0350 .0073	CKM 0010 0049 0023 0015 0009 .0013 .0038 .0054 .0070 .0074 .0079 .0049 .0068 0012	CYM 0011 .0008 .0009 .0002 0010 0014 0013 0011 0007 0012 0005 .0005 0011	CY •0159 •0216 •0177 •0156 •0157 •0165 •0165 •0165 •0155 •0141 •0085 •0157

. .

•

1

ļ

Provide and

h

.

*

•

:

.

4

			NASA LANC	SLEY		7 × 10		
. .						7 7 10	HIGH SPEED TU	MNE L
1121	2.4	RUN 33						
	ALTA	ALPHA	CL	CD	CM	CPM	CYM	CY
	-2.23	• ĉ u	.0713	.0143	.0066	0002		
	~>•U9	-h.b9	1583	.0332	-,0099	0039	0004	.0142
	-5.08	-3.74	0832	.0226	0014		.0011	.0207
	-5.UE	-1.71	0035	.0163	•0046	0025	.0013	.0171
	+0.ú3	.20	.0711	.0141	+0070	0008	.0005	.0150
	->.UO	2.30	1527	.01:4	•0070	0005	0006	.0149
	-4.96	4.29	.2236	.0201		.0024	0007	.0135
	-4.92	6.35	.2978	.0286	.0094	•0049	0008	.0152
	-4.88	8.41	.3754		.0116	.0061	0006	•0158
	-4.42	10.36	•4461	•0415	•0141	.0077	0002	.0171
	-4.76	12.51	.5278	.0580	•0164	•0103	0005	.0140
	-4.09	14.82	• 6275	.0836	• 0225	• 0101	•0002	.0129
	-1.03	+22		.1234	.0332	.0074	.0007	+0079
		• 6 6	•0729	•0142	•0066	0003	0004	.0146
TEST	1. Q	RUN 34						
		KUN 34						
	HETA		•					
	4.90	ALPHA	CL	CD	CM	CRM	CYM	CY
		•10	.0694	.0137	.0083	.0015	.0007	0145
	4.93	-2.81	1642	.0337	0096	.0045	0009	0196
	4.92	-3.84	-•0868	.0230	0003	.0033	0011	0146
	4.92	-1+61	 CU64	.0164	.0054	.0020	0005	
	4.90	•14	.0722	.6139	.0087	.0017		0149
	4.88	2.18	.1510	.0151	.0042	0016	•0009	0147
	4.86	4.20	.2222	.0194	.0101	0010	9000	0139
	4.83	0.24	.2984	.0274	.0116		.0006	0138
	4.00	8.30	.3691	.0394	•0138	0055	.0014	0152
	4.76	10.26	.4437	.0573		0078	.0013	0143
	4.71	12.39	.5247	.0836	.0169	089	•0010	0125
	4.04	14.63	•6165	•1195	.0245	0097	0003	0099
	4.90	.08	.0691	•0139	.0369	0122	0013	.0021
				•0139	.0080	.0016	.0008	0146
TEST	59	RUN 35						
	⇒ETA	ALPHA	CL	CD	C H			
	08	04	.0302	.0040	M)	CRM	CYM	CY
		.05	.0677	.0137	0022	0006	.0036	·00f1
	10	-5.81	1663		. 3086	.0005	.0001	.0016
	09	-3.06	0907	.0340	0067	0004	.0005	.0019
	09	-1.85	0093	.0231	.0021	•0003	.0004	.0020
	98	.09	•0697	.0165	.0076	•0005	.0004	.0016
	07	2.14		.6137	•0087	•000•	.0001	.0017
	7	4.14	• 1520	• C148	.0072	•0008	.0000	.0016
	06		• 2234	.0194	•0091	• 0008	.0000	.0023
		そ。1 H と。24	.2948	.0274	.0109	+000B	.0001	.0030
	06	10.16	• 3745	•0467	•0121	.0012	.0005	.0031
	35		•4419	•0558	.0164	0001	.0013	.0075
	03	12.29	•5190	•0786	•0221	4000+	.0006	.0073
	UP	14.59	• t v 77	.1141	.0328	.017	0004	.0054
		.05	•6677	+0138	.0087	.0007	.0001	.0017
TEST	59	810. 20						•0017
TC 24	2.4	9UN 30						
	BETA	ALPHA	CL	CD	CM	CRM	CYM	~ ~
	07	• 12	.0676	·C148	.0094	.0005	0001	CY CY
	-•0H	-5.77	1708	·C355	0046	0004		.0015
	− •08	-3.82	0912	.0241	.0031	+0001	.0001	• C C 2 O
	37	-1.75	+•0058	.0173	+0056	• 0001	• 0002	• OC10
	07	•13	.06+6	.0149	.0093		•0002	.0016
	− ↓ <i>J</i> €.	8.128	+15.45	• (169	.0084	•0004	.0000	+0018
	5	4.18	+2218	.0214	•0098	.0006	0002	.0023
	05	6.14	•29LH	• 0.5 86		• COOF	0001	+0026
	- •.14	5.28	.3717	+0240	.0123	•0011	0001	.0(33
	04	10.22	4458	•0639	.0143	·0015	.0004	.0020
	04	12.34	.5329		+0175	· 0CUP	.0010	. OC 4 H
	02	14.67	+6373	.0921	.0252	0000	+0017	.0100
	7	•13	•0744	+1361	.0345	+0066	0001	.0073
		▼ 4 _/	10144	• C152	•0029	.0005	0000	.0023
								₩ N K L J

.

i i i fan de Marian (fan Marian) La fan Staar (fan de 1984) - Lafan Angel La fan Staar (fan de 1984) - Lafan Angel

	2. Government Accession No.	······································
TM 80083		3. Recipient's Catalog No.
TERISTICS OF A LOW-	ZED LEADING-EDGE DEFLECTION AND ON THE LOW-SPEED AERODYNAMIC CHARAC- ASPECT-RATIO HIGHLY SWEPT ARROW-WING	 Report Date June 1979 Performing Organization Code
/ Author(s)	d Jarrett K. Huffman	B. Performing Organization Report No.
9. Performing Organization Nam		10. Work Unit No.
I INTER LAUVIEV Resear	ch Center	517-53-43-02
Hampton, VA 23665		11. Contract or Grant No.
12. Sponsoring Agency Name and		13 Turn of Busice
National Aeronautics Washington, DC 2054	Sand Shapon Administry of	13. Type of Report and Period Covered Technical Memorandum
	0	14. Sponsoring Agency Code
15. Supplementary Notes		
16. Abstract		
formance of a configu	iration with a low-aspect wetter on	7- by 10-foot tunnel to determine the low-speed aerodynamic per-
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc	Thas been conducted in the Langley 7 optimized leading-edge deflection on aration with a low-aspect-ratio, high ermine the sensitivity of the latera ading-edge deflection was developed w along the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge suc esults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	by aligning the leading edge he spanwise variation of upwash, uously warped surface for which at the wing tip. For the par-
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc estimates provided by	ading-edge deflection was developed w along the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge suc esults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	by aligning the leading edge he spanwise variation of upwash, uously warped surface for which at the wing tip. For the par-
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc estimates provided by	ading-edge deflection was developed walong the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge suc esults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	by aligning the leading edge he spanwise variation of upwash uously warped surface for which at the wing tip. For the par- tion on the order of 90 percent ne the sensitivity of $C_{2\beta}$ to in reasonable agreement with
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc estimates provided by 17. Key Words (Suggested by Author) Arrow wing Swept wing	ading-edge deflection was developed ading-edge deflection was developed w along the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge suc esults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	by aligning the leading edge he spanwise variation of upwash uously warped surface for which at the wing tip. For the par- tion on the order of 90 percent ne the sensitivity of $C_{2\beta}$ to in reasonable agreement with
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc estimates provided by	ading-edge deflection was developed ading-edge deflection was developed w along the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge suc esults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	have townspeed derodynamic per- aly swept wing. Tests have also al-stability derivative $(C_{2\beta})$ to by aligning the leading edge he spanwise variation of upwash, uously warped surface for which at the wing tip. For the par- tion on the order of 90 percent ne the sensitivity of $C_{2\beta}$ to in reasonable agreement with nent ed - Unlimited
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc estimates provided by 17. Key Words (Suggested by Author Arrow wing Swept wing Leading-edge deflection	ading-edge deflection was developed walong the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge succesults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	here townspeed derodynamic per- hly swept wing. Tests have also al-stability derivative (C _{2β}) to by aligning the leading edge he spanwise variation of upwash, uously warped surface for which at the wing tip. For the par- tion on the order of 90 percent ne the sensitivity of C _{2β} to in reasonable agreement with here ed - Unlimited Subject Category 02
been conducted to det geometric anhedral. The optimized le with the incoming flo the resulting optimiz the deflection varied ticular configuration were achieved. The re geometric anhedral inc estimates provided by 17. Key Words (Suggested by Author) Arrow wing Swept wing Leading-edge deflection	ading-edge deflection was developed ading-edge deflection was developed w along the entire span. Owing to t ed leading edge was a smooth, contin from 16° at the side of body to 50° studied, levels of leading-edge suc esults of tests conducted to determin dicate values of $\partial C_{2\beta}/\partial \Gamma$ which are simple vortex-lattice theories.	here townspeed derodynamic per- hly swept wing. Tests have also al-stability derivative (C _{2β}) to by aligning the leading edge he spanwise variation of upwash, uously warped surface for which at the wing tip. For the par- tion on the order of 90 percent ne the sensitivity of C _{2β} to in reasonable agreement with here ed - Unlimited Subject Category 02 here

1

۱. **.**

ŷ

-

-

•

4

, **e** ŗ έ.