194 research outputs found

    Air pollution disasters: liability issues in negligence associated with the provision of Personal Protective Interventions (facemasks)

    Get PDF
    Disasters may impact air quality through the generation of high levels of potentially pathogenic particulate matter (PM), for example, in a volcanic eruption. Depending on the concentrations of particles in the air, their size and composition, and the duration of exposure, high levels of PM can create significant public health issues. It has been argued that air pollution, in and of itself, is a public health crisis. One possible intervention to reduce exposure to high levels of PM during an air pollution disaster (APD) is using facemasks. However, agencies may be reluctant to recommend or distribute facemasks for community use during APDs for a variety of reasons, including concerns about liability. There has been no analysis of these concerns. This paper analyzes whether agencies may have a legal duty of care in negligence to provide warnings about the health risks associated with APDs and/or to recommend facemasks as a protective mechanism for community use to reduce exposure to PM. It is also the first to examine the potential for liability in negligence, when a decision is made to distribute facemasks for community use during an APD and the receiver alleges that they sustained a personal injury and seeks compensation

    Perceptions of volcanic air pollution and exposure reduction practices on the Island of Hawai‘i: Working towards socially relevant risk communication

    Get PDF
    Kīlauea volcano, on the Island of Hawai‘i, is one of the most active volcanoes in the world. Over the past four decades it has released large amounts of volcanic gases and aerosols which form volcanic air pollution known as ‘vog’. Communities downwind of Kīlauea have been chronically or episodically exposed to this potentially harmful air pollution and have raised concerns about the hazards of vog exposure. Public health and civil protection agencies have offered a range of advice, information, and mitigation strategies for living with vog. In this mixed-methods social study, we investigate the translation of official advice into practice in Island of Hawai‘i communities and assess how risk communication could be improved by considering public input, preferences, and community relevance. Given the paucity of information on the long-term effects of chronic vog exposure, assessing the effectiveness of public health and risk communication is vital.In 2015, through questionnaire surveys (n = 143), four focus groups and several stakeholder meetings, we assessed whether, and how, residents accessed intervention advice, if it was relevant and useful, how they acted on it and how they would like to receive advice and urgent exposure warnings in the future. We also investigated local knowledge and self-developed interventions and documented the perceived risks of vog exposure, including symptoms that people attribute to vog.Most participants (83%) perceived that vog caused health symptoms such as exacerbation of asthma, itchy eyes, and blocked nose and 62% thought it was harmful to their long-term health. A third of participants had considered relocating to avoid the vog yet, despite this, most people took no action to reduce vog exposure. Participants reported that the official advice was difficult to follow given their living situation or lifestyle. Some participants viewed the agency advice as inconsistent, irrelevant, or out of date. Participants preferred to receive advice and air quality alerts via a variety of media, depending on factors such as their access to internet, cell phone, and radio reception.The study findings led to a collaboration with federal and state health, land management, educational, science, and civil protection agencies to improve and standardize health advisory messaging, to make it more relevant to Island of Hawai‘i communities and environment. New printable and web-based communication products were developed, which included local knowledge of effective protective actions/symptom reduction strategies. An interagency ‘Vog Dashboard’ was also introduced to consolidate vog knowledge, including sources of air quality data, vog forecasts, and advice on vog environmental, agricultural, and health impacts. This dashboard was recommended as a primary site for advice by international media outlets in 2018 and was heavily used during the 2018 Kīlauea and 2022 Mauna Loa eruption crises

    The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard

    Get PDF
    BACKGROUND: Respirable crystalline silica (RCS) continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1) the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2) particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3) the cristobalite surface is occluded by an annealed rim; 4) dissolution of other volcanic particles affects the surfaces of RCS in the lung. METHODS: The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch's two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. RESULTS: Volcanic cristobalite contains up to 4 wt. % combined Al(2)O(3) and Na(2)O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. CONCLUSIONS: The composition of volcanic cristobalite particles gives insight into previously-unconsidered inherent characteristics of silica mineralogy which may affect toxicity. The structural features identified may also influence the hazard of other environmentally and occupationally produced silica dusts. Current exposure regulations do not take into account the characteristics that might render the silica surface less harmful. Further research would facilitate refinement of the existing simple, mass-based silica standard by taking into account composition, allowing higher standards to be set in industries where the silica surface is modified.Natural Environment Research Council (NERC)Moyes Foundation - studentshi

    Facemask use for community protection from air pollution disasters: An ethical overview and framework to guide agency decision making

    Get PDF
    Disasters involving severe air pollution episodes create a pressing public health issue. During such emergencies, there may be pressure on agencies to provide solutions to protect affected communities. One possible intervention to reduce exposure during such crises is facemasks. Ethical values need to be considered as part of any decision-making process to assess whether to provide advice on, recommend and/or distribute any public health intervention. In this paper, we use principles from public health ethics to analyse the critical ethical issues that relate to agencies providing advice on, recommending and/or distributing facemasks in air pollution disasters, given a lack of evidence of both the specific risk of some polluting events or the effectiveness of facemasks in community settings. The need for reflection on the ethical issues raised by the possible recommendation/use of facemasks to mitigate potential health issues arising from air pollution disasters is critical as communities progressively seek personal interventions to manage perceived and actual risks. This paper develops an ethical decision-making framework to assist agency deliberations. We argue that clarity around decision-making by agencies, after using this framework, may help increase trust about the intervention and solidarity within and between populations affected by these disasters and the agencies who support public health or provide assistance during disasters

    Carers' perceptions of harm and the protective measures taken to safeguard children's health against inhalation of volcanic ash: A comparative study across Indonesia, Japan and Mexico

    Get PDF
    Volcanic ash contains potentially toxic elements which could affect human health. There is a paucity of research focusing on the impact of airborne volcanic emissions on the health of children, and on their exposure reduction. Children's carers (parents/guardians) are critical to their protection, so documenting their perceptions of the health risk and their knowledge of how to reduce their children's exposure is an important first step to increase our understanding of how risks are acted upon. This article reports the findings of a survey of 411 residents with caring responsibilities for children aged 12 and under in communities near the active volcanoes of Sakurajima in Japan, Merapi in Indonesia, and Popocatépetl in Mexico. Informed by the Protective Action Decision Model (PADM) and Protection Motivation Theory (PMT), we investigated their perceptions of the health effects and harmful consequences of the ash on their children, how important they thought it was to protect them, and the protective actions taken. The Indonesian carers were the most concerned and motivated to protect their children, although, in all three countries, the large majority of carers had adopted protective measures that they perceived to be most effective, such as keeping windows and doors closed. Path analysis illustrated how the connection between perceptions of harm/worry and importance of protection could partially account for higher motivation levels to protect children, in the Indonesian carers. We discuss the key messages conveyed through the findings that are of relevance for policy, practice and training in all three countries

    The α–ÎČ phase transition in volcanic cristobalite

    Get PDF
    Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the [alpha] and [beta] forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the [alpha]-[beta] phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the [alpha] form and has a larger cell volume than synthetic [alpha]-cristobalite; as a result, its diffraction pattern sits between ICDD [alpha]- and [beta]-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower [alpha]-[beta] transition temperature (~473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with [alpha] and [beta] phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures

    Health‐Damaging Climate Events Highlight the Need for Interdisciplinary, Engaged Research

    Get PDF
    In 2023 human populations experienced multiple record‐breaking climate events, with widespread impacts on human health and well‐being. These events include extreme heat domes, drought, severe storms, flooding, and wildfires. Due to inherent lags in the climate system, we can expect such extremes to continue for multiple decades after reaching net zero carbon emissions. Unfortunately, despite these significant current and future impacts, funding for research in climate and health has lagged behind that for other geoscience and biomedical research. While some initial efforts from funding agencies are evident, there is still a significant need to increase the resources available for multidisciplinary research in the face of this issue. As a group of experts at this important intersection, we call for a more concerted effort to encourage interdisciplinary and policy‐relevant investigations into the detrimental health effects of continued climate change

    The post-2016 long-lasting Vulcanian activity of Sabancaya volcano (Peru) and associated aeolian remobilisation of volcanic ash

    Get PDF
    The characterisation of tephra deposits resulting from almost simultaneous sedimentation and wind remobilisation is complex, and multidisciplinary strategies are required in order to accurately constrain associated processes and eruptive parameters. We present a multifaceted study that aims to characterise the recent eruptive activity and the subsequent aeolian remobilisation of tephra deposits at Sabancaya volcano (Peru), which started erupting in November 2016 with frequent and relatively small explosions (plume heights <6 km above the vent). First, we estimated the bulk volume of tephra deposit produced between November 2016 and August 2018 at 0.04 ± 0.02 km3, and the dense rock equivalent (DRE) volume at 0.02 ± 0.01 kilometros3. This corresponds to a tephra production rate of 1.1 ± 0.5 x 10−3 km3 DRE per month. Second, continuous sampling in a dedicated tephra collector network between April 2018 and November 2019 allowed estimation of the tephra volume at 2.3 ± 1.1 x 10−5 km3 DRE per month, indicating a significant decrease in the mass eruption rate since 2018. Third, by characterising the pulsatory activity through the repose interval between explosions and magma characteristics, Sabancaya's activity was classified as Vulcanian. Finally, aeolian remobilisation phenomena were studied using high-resolution videos, measurements of the airborne concentration of particulate matter with a diameter of ≀10 ÎŒm (PM10) and particle physical characterisation. Subtle morphological differences are identified between remobilised particles and those in primary deposits, and we found that particles moving at ground level and above 1.5 m have grainsizes transportable by saltation and suspension, respectively
    • 

    corecore