145 research outputs found

    The endodermal passage cell - just another brick in the wall?

    Get PDF

    Control of multiferroic domains by external electric fields in TbMnO3

    Full text link
    The control of multiferroic domains through external electric fields has been studied by dielectric measurements and by polarized neutron diffraction on single-crystalline TbMnO3_3. Full hysteresis cycles were recorded by varying an external field of the order of several kV/mm and by recording the chiral magnetic scattering as well as the charge in a sample capacitor. Both methods yield comparable coercive fields that increase upon cooling.Comment: 12 pages, 6 figure

    A Model for Using Television and Video to Motivate Writing

    Get PDF
    Three university consultants developed a model to explore the effectiveness of using television and video to motivate writing. Following a series of motivational and brainstorming sessions using television, video, and popular literature, twenty-three fifth grade students were assigned to cooperative groups where they wrote and videotaped dramatizations of short teaser scripts. Observations derived from the completed model reveal the compelling influence of television and video on the lives of children

    Novel Iron-Chelator DIBI Inhibits Staphylococcus aureus Growth, Suppresses Experimental MRSA Infection in Mice and Enhances the Activities of Diverse Antibiotics in vitro

    Get PDF
    DIBI, a purpose-designed hydroxypyridinone-containing iron-chelating antimicrobial polymer was studied for its anti-staphylococcal activities in vitro in comparison to deferiprone, the chemically related, small molecule hydroxypyridinone chelator. The sensitivities of 18 clinical isolates of Staphylococcus aureus from human, canine and bovine infections were determined. DIBI was strongly inhibitory to all isolates, displaying approximately 100-fold more inhibitory activity than deferiprone when compared on their molar iron-binding capacities. Sensitivity to DIBI was similar for both antibiotic-resistant and -sensitive isolates, including hospital- and community-acquired (United States 300) MRSA. DIBI inhibition was primarily bacteriostatic in nature at low concentration and was reversible by addition of Fe. DIBI also exhibited in vivo anti-infective activity in two distinct MRSA ATCC43300 infection and colonization models in mice. In a superficial skin wound infection model, topical application of DIBI provided a dose-dependent suppression of infection along with reduced wound inflammation. Intranasal DIBI reduced staphylococcal burden by >2 log in a MRSA nares carriage model. DIBI was also examined for its influence on antibiotic activities with a reference isolate ATCC6538, typically utilized to assess new antimicrobials. Sub-bacteriostatic concentrations of DIBI resulted in Fe-restricted growth and this physiological condition displayed increased sensitivity to GEN, CIP, and VAN. DIBI did not impair antibiotic activity but rather it enhanced overall killing. Importantly, recovery growth of survivors that typically followed an initial sub-MIC antibiotic killing phase was substantially suppressed by DIBI for each of the antibiotics examined. DIBI has promise for restricting staphylococcal infection on its own, regardless of the isolate’s animal source or antibiotic resistance profile. DIBI also has potential for use in combination with various classes of currently available antibiotics to improve their responses

    Pharmacological assessment of the contribution of the arterial baroreflex to sympathetic discharge patterns in healthy humans

    Get PDF
    To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside (NTP) and phenylephrine (PE) and measured action potential (AP) patterns with wavelet-based methodology. We hypothesized that 1) baroreflex unloading (NTP) would increase firing of low-threshold axons and recruitment of latent axons and 2) baroreflex loading (PE) would decrease firing of low-threshold axons. Heart rate (HR, ECG), arterial blood pressure (BP, brachial catheter), and muscle sympathetic nerve activity (MSNA, microneurography of peroneal nerve) were measured at baseline and during steady-state systemic, intravenous NTP (0.5-1.2 µg·kg -1 ·min -1 , n = 13) or PE (0.2-1.0 µg·kg -1 ·min -1 , n = 9) infusion. BP decreased and HR and integrated MSNA increased with NTP (P \u3c 0.01). AP incidence (326 ± 66 to 579 ± 129 APs/100 heartbeats) and AP content per integrated burst (8 ± 1 to 11 ± 2 APs/burst) increased with NTP (P \u3c 0.05). The firing probability of low-threshold axons increased with NTP, and recruitment of high-threshold axons was observed (22 ± 3 to 24 ± 3 max cluster number, 9 ± 1 to 11 ± 1 clusters/burst; P \u3c 0.05). BP increased and HR and integrated MSNA decreased with PE (P \u3c 0.05). PE decreased AP incidence (406 ± 128 to 166 ± 42 APs/100 heartbeats) and resulted in fewer unique clusters (15 ± 2 to 9 ± 1 max cluster number, P \u3c 0.05); components of an integrated burst (APs or clusters per burst) were not altered (P \u3e 0.05). These data support a hierarchical pattern of sympathetic neural activation during manipulation of baroreceptor afferent activity, with rate coding of active neurons playing the predominant role and recruitment/derecruitment of higher-threshold units occurring with steady-state hypotensive stress. NEW & NOTEWORTHY To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside and phenylephrine and measured sympathetic outflow with wavelet-based methodology. Baroreflex unloading increased sympathetic activity by increasing firing probability of low-threshold axons (rate coding) and recruiting new populations of high-threshold axons. Baroreflex loading decreased sympathetic activity by decreasing the firing probability of larger axons (derecruitment); however, the components of an integrated burst were unaffected

    The P-Loop Domain of Yeast Clp1 Mediates Interactions Between CF IA and CPF Factors in Pre-mRNA 3′ End Formation

    Get PDF
    Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3′ end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 homologues, but not the yeast protein, carry 5′ RNA kinase activity. We show that depletion of Clp1 in yeast promoted defective 3′ end formation and RNA polymerase II termination; however, cells expressing Clp1 with mutant P-loops displayed only minor defects in gene expression. Similarly, purified and reconstituted mutant CF IA factors that interfered with ATP binding complemented CF IA depleted extracts in coupled in vitro transcription/3′ end processing reactions. We found that Clp1 was required to assemble recombinant CF IA and that certain P-loop mutants failed to interact with the CF IA subunit Pcf11. In contrast, mutations in Clp1 enhanced binding to the 3′ endonuclease Ysh1 that is a component of CPF. Our results support a structural role for the Clp1 P-loop motif. ATP binding by Clp1 likely contributes to CF IA formation and cross-factor interactions during the dynamic process of 3′ end formation

    Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach

    Get PDF
    Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally

    Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes

    Get PDF
    Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models of plant-pathogen interactions. However, far less is known about the role of PTI in roots in general and in plant-nematode interactions in particular. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Consistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase, termed NILR1 that is specifically regulated upon infection by nematodes. We show that NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1 is the first example of an immune receptor that is involved in induction of basal immunity (PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide new options for nematode control in crop plants in future
    • …
    corecore