104 research outputs found

    Fungal enzyme sets for plant polysaccharide degradation

    Get PDF
    Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families

    Ferrotoroidic ground state in a heterometallic {Cr<sup>III</sup>Dy<sup>III</sup><inf>6</inf>} complex displaying slow magnetic relaxation

    Get PDF
    © 2017 The Author(s). Toroidal quantum states are most promising for building quantum computing and information storage devices, as they are insensitive to homogeneous magnetic fields, but interact with charge and spin currents, allowing this moment to be manipulated purely by electrical means. Coupling molecular toroids into larger toroidal moments via ferrotoroidic interactions can be pivotal not only to enhance ground state toroidicity, but also to develop materials displaying ferrotoroidic ordered phases, which sustain linear magneto-electric coupling and multiferroic behavior. However, engineering ferrotoroidic coupling is known to be a challenging task. Here we have isolated a {CrIIIDyIII6} complex that exhibits the much sought-after ferrotoroidic ground state with an enhanced toroidal moment, solely arising from intramolecular dipolar interactions. Moreover, a theoretical analysis of the observed sub-Kelvin zero-field hysteretic spin dynamics of {CrIIIDyIII6} reveals the pivotal role played by ferrotoroidic states in slowing down the magnetic relaxation, in spite of large calculated single-ion quantum tunneling rates

    Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models

    Get PDF

    Novel expression system

    No full text
    Recombinant DNA molecules coding for a pectin lyase expression system and derivatives thereof, such as the structural gene of PLI and corresponding regulatory sequences, e.g. promoter, signal and terminator sequences, and hybrid vectors comprising corresponding DNAs, including hybrid vectors with DNA coding for homologous or heterologous polypeptides, hosts, especially filamentous fungi, e.g. Aspergillus hosts, transformed by said vectors, methods for the preparation of said recombinant DNA molecules and said hosts and the use of the recombinant DNA molecules for the preparation of new expression systems. A further objective is the preparation of polypeptides by means of said DNAs and said hosts

    Polarized Raman spectra of beryl and bazzite

    No full text
    The polarized Raman spectra of four different beryl crystals were studied at room temperature in the range from 30 to 4000 cm-1. The spectra show significant differences between the samples studied, and corrections are proposed for the reference Raman spectra of beryl previously reported by Adams and Gardner (1974). Type II water is observed in two crystals; the corresponding symmetric Raman stretching band at 3595 cm-1 is extremely strong for an impurity (about 20% of the strongest beryl lattice mode). Another, sharper, band of similar intensity at 3605 cm-1 could possibly originate from a hydroxyl stretching mode. Additional weaker bands are observed around 1600 cm-1 and 3600–3750 cm-1. The first polarized Raman spectra of bazzite are presented and discussed
    corecore