143 research outputs found

    Fluorescence Correlation Spectroscopy analysis of segmental dynamics in Actin filaments

    Full text link
    We adapt Fluorescence Correlation spectroscopy (FCS) formalism to the studies of the dynamics of semi-flexible polymers and derive expressions relating FCS correlation function to the longitudinal and transverse mean square displacements of polymer segments. We use the derived expressions to measure the dynamics of actin filaments in two experimental situations: filaments labeled at distinct positions and homogeneously labeled filaments. Both approaches give consistent results and allow to measure the temporal dependence of the segmental mean-square displacement (MSD) over almost five decades in time, from ~0.04ms to 2s. These noninvasive measurements allow for a detailed quantitative comparison of the experimental data to the current theories of semi-flexible polymer dynamics. Good quantitative agreement is found between the experimental results and theories explicitly accounting for the hydrodynamic interactions between polymer segments

    Load fluctuations drive actin network growth

    Full text link
    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuations of the microsphere or entire actin network, and not individual filaments, govern motility. This conclusion is supported by Monte Carlo simulations of an adhesion--based BR and suggests an important role for membrane tension in the control of actin--based cellular protrusions.Comment: To be published in PNA

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    New Proposed Mechanism of Actin-Polymerization-Driven Motility

    Get PDF
    We present the first numerical simulation of actin-driven propulsion by elastic filaments. Specifically, we use a Brownian dynamics formulation of the dendritic nucleation model of actin-driven propulsion. We show that the model leads to a self-assembled network that exerts forces on a disk and pushes it with an average speed. This simulation approach is the first to observe a speed that varies non-monotonically with the concentration of branching proteins (Arp2/3), capping protein and depolymerization rate (ADF), in accord with experimental observations. Our results suggest a new interpretation of the origin of motility that can be tested readily by experiment.Comment: 31 pages, 5 figure

    Quantitative description of temperature induced self-aggregation thermograms determined by differential scanning calorimetry

    Get PDF
    A novel thermodynamic approach for the description of differential scanning calorimetry (DSC) experiments on self-aggregating systems is derived and presented. The method is based on a mass action model where temperature dependence of aggregation numbers is considered. The validity of the model was confirmed by describing the aggregation behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers, which are well-known to exhibit a strong temperature dependence. The quantitative description of the thermograms could be performed without any discrepancy between calorimetric and van 't Hoff enthalpies, and moreover, the aggregation numbers obtained from the best fit of the DSC experiments are in good agreement with those obtained by light scattering experiments corroborating the assumptions done in the derivation of the new model

    An Experimental and Computational Study of the Effect of ActA Polarity on the Speed of Listeria monocytogenes Actin-based Motility

    Get PDF
    Listeria monocytogenes is a pathogenic bacterium that moves within infected cells and spreads directly between cells by harnessing the cell's dendritic actin machinery. This motility is dependent on expression of a single bacterial surface protein, ActA, a constitutively active Arp2,3 activator, and has been widely studied as a biochemical and biophysical model system for actin-based motility. Dendritic actin network dynamics are important for cell processes including eukaryotic cell motility, cytokinesis, and endocytosis. Here we experimentally altered the degree of ActA polarity on a population of bacteria and made use of an ActA-RFP fusion to determine the relationship between ActA distribution and speed of bacterial motion. We found a positive linear relationship for both ActA intensity and polarity with speed. We explored the underlying mechanisms of this dependence with two distinctly different quantitative models: a detailed agent-based model in which each actin filament and branched network is explicitly simulated, and a three-state continuum model that describes a simplified relationship between bacterial speed and barbed-end actin populations. In silico bacterial motility required a cooperative restraining mechanism to reconstitute our observed speed-polarity relationship, suggesting that kinetic friction between actin filaments and the bacterial surface, a restraining force previously neglected in motility models, is important in determining the effect of ActA polarity on bacterial motility. The continuum model was less restrictive, requiring only a filament number-dependent restraining mechanism to reproduce our experimental observations. However, seemingly rational assumptions in the continuum model, e.g. an average propulsive force per filament, were invalidated by further analysis with the agent-based model. We found that the average contribution to motility from side-interacting filaments was actually a function of the ActA distribution. This ActA-dependence would be difficult to intuit but emerges naturally from the nanoscale interactions in the agent-based representation

    Interplay of Magnetic Interactions and Active Movements in the Formation of Magnetosome Chains

    Get PDF
    Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum
    • …
    corecore