156 research outputs found

    The Mg 2 h and k lines in a sample of dMe and dM stars

    Get PDF
    Both Mg II h and k line fluxes are presented for a sample of 4 dMe and 3 dM stars obtained with the IUE satellite in the long wavelength, low dispersion mode. The observed fluxes are converted to stellar surface flux units and the importance of chromospheric non radiative heating in this sample of M dwarf stars is intercompared. In addition, the net chromospheric radiative losses due to the Ca II H and K lines in those stars in the sample for which calibrated Ca II H and K line data exist are compared. Active region filling factors which likely give rise to the observed optical and ultraviolet chromospheric emission are estimated. The implications of the results for homogeneous, single component stellar model chromospheres analyses are discussed

    Combined ultraviolet studies of astronomical sources

    Get PDF
    Ultraviolet studies of astronomical sources are discussed. Some studies utilized IVE data. Non-radiative shock at the edge of the Cygnses Loop, stellar flares, local interestellar medium, hot galaxies, stellar mass ejection, contact binaries, double quasars, and stellar chromosphere and coronae are discussed

    Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. I. The Complex Behavior of the M8.5 Dwarf TVLM513-46546

    Get PDF
    [Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.Comment: 13 pages, 4 figure

    Strong latitudinal shear in the shallow convection zone of a rapidly rotating A-star

    Full text link
    We have derived the mean broadening profile of the star V102 in the region of the open cluster IC4665 from high resolution spectroscopy. At a projected equatorial rotation velocity of vsini = (105 +- 12)km/s we find strong deviation from classical rotation. We discuss several scenarios, the most plausible being strong differential rotation in latitudinal direction. For this scenario we find a difference in angular velocity of DeltaOmega = 3.6 +- 0.8 rad/d (DeltaOmega/Omega = 0.42 +- 0.09). From the Halpha line we derive a spectral type of A9 and support photometric measurements classifying IC4665 V102 as a non-member of IC4665. At such early spectral type this is the strongest case of differential rotation observed so far. Together with three similar stars, IC4665 V102 seems to form a new class of objects that exhibit extreme latitudinal shear in a very shallow convective envelope.Comment: accepted for A&A Letter

    Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. II. Mixed Trends in VB10 and LSR1835+32 and the Possible Role of Rotation

    Get PDF
    [Abridged] As part of our on-going investigation of magnetic activity in ultracool dwarfs we present simultaneous radio, X-ray, UV, and optical observations of LSR1835+32 (M8.5), and simultaneous X-ray and UV observations of VB10 (M8), both with a duration of about 9 hours. LSR1835+32 exhibits persistent radio emission and H-alpha variability on timescales of ~0.5-2 hr. The detected UV flux is consistent with photospheric emission, and no X-ray emission is detected to a deep limit of L_X/L_bol<10^-5.7. The H-alpha and radio emission are temporally uncorrelated, and the ratio of radio to X-ray luminosity exceeds the correlation seen in F-M6 stars by >2x10^4. Similarly, L_Halpha/L_X>10 is at least 30 times larger than in early M dwarfs, and eliminates coronal emission as the source of chromospheric heating. The lack of radio variability during four rotations of LSR1835+32 requires a uniform stellar-scale field of ~10 G, and indicates that the H-alpha variability is dominated by much smaller scales, <10% of the chromospheric volume. VB10, on the other hand, shows correlated flaring and quiescent X-ray and UV emission, similar to the behavior of early M dwarfs. Delayed and densely-sampled optical spectra exhibit a similar range of variability amplitudes and timescales to those seen in the X-rays and UV, with L_Halpha/L_X~1. Along with our previous observations of the M8.5 dwarf TVLM513-46546 we conclude that late M dwarfs exhibit a mix of activity patterns, which points to a transition in the structure and heating of the outer atmosphere by large-scale magnetic fields. We find that rotation may play a role in generating the fields as evidenced by a tentative correlation between radio activity and rotation velocity. The X-ray emission, however, shows evidence for super-saturation at vsini>25 km/s.Comment: Submitted to Ap

    Employing a New BVIc Photometric Survey of IC 4665 to Investigate the Age of this Young Open Cluster

    Full text link
    We present a new, BVIc photometric survey of the young open cluster IC4665, which improves on previous studies of this young cluster by incorporating a rigorous standardization procedure, thus providing high-fidelity colors and magnitudes for cluster members. We use this new photometric dataset to reevaluate the properties (age and distance) of IC4665. Namely, using a statistical approach incorporating Tau^2 CMD modeling, we measure a pre-main-sequence isochrone age and distance of 36+-9 Myr and 360+-12 pc, as well as a upper-main-sequence turn-off age and distance of 42+-12 Myr and 357+-12 pc. These ages and distances are highly dependent on the isochrone model and color used for the fitting procedure, with a possible range of ~10-20 Myr in age and ~20 pc in distance. This spread in calculated ages and distances seen between colors and models is likely due to limitations in the individual membership catalogs and/or systematic differences in the predicted stellar parameters from the different sets of models. Interestingly, when we compare the isochrone ages for IC4665 to the published lithium depletion boundary age, 28+-5 Myr, we observe that this cluster does not appear to follow the trend of isochrone ages being 1.5 times smaller than lithium depletion boundary ages. In addition, comparing the overall magnetic activity (X-ray and H-alpha emission) in IC4665 with other well studied open clusters, we find the observed activity distributions for this young cluster are best characterized by assuming an age of 30-40 Myr, thus in agreement with our pre-main-sequence and turn-off isochrone ages for IC4665. Overall, although some age discrepancies do exist, particularly in the ages measured from pre-main-sequence isochrones, the range of possible IC4665 ages derived from the various dating techniques employed here is relatively small compared to that found for other well studied open clusters.Comment: 17 pages, 13 figures, 6 tables; Accepted for publication in the Astronomical Journa

    Современные технические средства в работе секретаря

    Get PDF
    The article examines the technical devices used in the secretary work. Guided books and magazines for secretarial business, makes recommendations for the proper selection and use of technical devices. Furthermore, in this article the author gives examples of the most popular and commonly used programs for personal computers. All of these techniques can significantly reduce the cost of working time and improve the quality of performing their job duties

    Periodic Radio and H-alpha Emission from the L Dwarf Binary 2MASSW J0746425+200032: Exploring the Magnetic Field Topology and Radius of an L Dwarf

    Get PDF
    [Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio emission, dominated by short-duration periodic pulses at 4.86 GHz with P=124.32+/-0.11 min. The stability of the pulse profiles and arrival times demonstrates that they are due to the rotational modulation of a B~1.7 kG magnetic field. A quiescent non-variable component is also detected, likely due to emission from a uniform large-scale field. The H-alpha emission exhibits identical periodicity, but unlike the radio pulses it varies sinusoidally and is offset by exactly 1/4 of a phase. The sinusoidal variations require chromospheric emission from a large-scale field structure, with the radio pulses likely emanating from the magnetic poles. While both light curves can be explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out a symmetric dipole topology since it would result in a phase lag of 1/2 (poloidal field) or zero (toroidal field). We therefore conclude that either (i) the field is dominated by a quadrupole configuration, which can naturally explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions are not trivially aligned with the field. Regardless of the field topology, we use the measured period along with the known rotation velocity (vsini=27 km/s), and the binary orbital inclination (i=142 deg), to derive a radius for the primary star of 0.078+/-0.010 R_sun. This is the first measurement of the radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides a constraint on the mass-radius relation below 0.1 M_sun. We find that the radius is about 30% smaller than expected from theoretical models, even for an age of a few Gyr.Comment: Submitted to Ap
    corecore