16 research outputs found

    Palaeoclimatic events, dispersal and migratory losses along the Afro-European axis as drivers of biogeographic distribution in Sylvia warblers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Old World warbler genus <it>Sylvia </it>has been used extensively as a model system in a variety of ecological, genetic, and morphological studies. The genus is comprised of about 25 species, and 70% of these species have distributions at or near the Mediterranean Sea. This distribution pattern suggests a possible role for the Messinian Salinity Crisis (from 5.96-5.33 Ma) as a driving force in lineage diversification. Other species distributions suggest that Late Miocene to Pliocene Afro-tropical forest dynamics have also been important in the evolution of <it>Sylvia </it>lineages. Using a molecular phylogenetic hypothesis and other methods, we seek to develop a biogeographic hypothesis for <it>Sylvia </it>and to explicitly assess the roles of these climate-driven events.</p> <p>Results</p> <p>We present the first strongly supported molecular phylogeny for <it>Sylvia</it>. With one exception, species fall into one of three strongly supported clades: one small clade of species distributed mainly in Africa and Europe, one large clade of species distributed mainly in Africa and Asia, and another large clade with primarily a circum-Mediterranean distribution. Asia is reconstructed as the ancestral area for <it>Sylvia</it>. Long-distance migration is reconstructed as the ancestral character state for the genus, and sedentary behavior subsequently evolved seven times.</p> <p>Conclusion</p> <p>Molecular clock calibration suggests that <it>Sylvia </it>arose in the early Miocene and diverged into three main clades by 12.6 Ma. Divergence estimates indicate that the Messinian Salinity Crisis had a minor impact on <it>Sylvia</it>. Instead, over-water dispersals, repeated loss of long-distance migration, and palaeo-climatic events in Africa played primary roles in <it>Sylvia </it>divergence and distribution.</p

    Impacts of selective logging on insectivorous birds in Borneo: The importance of trophic position, body size and foraging height

    Get PDF
    Habitat destruction and degradation are major drivers of biodiversity loss and attention is increasingly focused on how different traits of species affect their vulnerability. Dietary traits are critical in this respect, and are typically examined by assigning species to different feeding and foraging guilds. However, such guilds may mask large variation in species' trophic interactions, limiting our understanding of species' responses. Here we use stable isotopes to quantify trophic positions within a Family of insectivorous understory birds, the Timaliidae (babblers), within Bornean rainforests. We then relate changes in species' abundances following intensive selective logging of forest to their trophic positions, body sizes and foraging heights. We found that trophic positions within this single feeding guild spanned more than an entire trophic level. Moreover, changes in abundance following logging were significantly and independently related to mean trophic position in primary forest, body size and foraging height: large ground-feeding species occupying high trophic positions were more adversely affected than small understory-feeders with lower trophic positions. These three variables together explained 81% of the variance in species' responses to logging. The single most important predictor, however, was a species' mean trophic position. Species recorded in both habitats also had significantly higher trophic positions in logged forest. These data provide critical new understanding of species' responses to disturbance. They also indicate previously unrecognised functional changes to species assemblages following logging, highlighting the importance of numerical assessments of trophic position within individual feeding guilds
    corecore