2,064 research outputs found

    Scientific Rhythm

    Get PDF

    Loss of seagrass results in changes to benthic infaunal community structure and decreased secondary production

    Get PDF
    Seagrass beds have decreased in abundance and areal coverage over the past several decades. Although previous studies have examined the importance of seagrass for benthic community assemblages and abundances, the effect of seagrass on deep-dwelling, large (high-biomass) infauna and the importance for benthic secondary production in Chesapeake Bay have not been addressed. Using benthic suctions and push cores, we compared density, diversity, and secondary productivity of benthic communities in seagrass to those in other shallow-water habitats and estimated benthic secondary productivity lost in the York River due to loss of seagrass from 1971 to 2016. We examined four habitat types in the York River: unvegetated, Gracilaria spp., mixed seagrass (multiple seagrass species), and Zostera marina L. seagrass. Physical characteristics of habitat types and biomass of organisms were assessed, and annual secondary productivity was calculated using biomass and production-to-biomass ratios. Benthic density, diversity, secondary productivity, sedimentary chlorophyll a, and percent sand were all highest in seagrass beds with Z. marina alone. Approximately 35% of benthic secondary productivity, or 1.51 × 108 g C yr–1, was lost in the York River in 1971–2016 due to the loss of seagrass beds to unvegetated substrate. The loss of seagrass in the York River over time and the associated decrease in benthic secondary productivity that we estimated could have negative consequences for the productivity of epibenthic predators. Our data emphasize the importance of conservation and restoration of seagrass

    Separate authorship categories to recognize data collectors and code developers

    Get PDF

    Evaluation of Spontaneous Swallow Frequency in Healthy People and Those With, or at Risk of Developing, Dysphagia: A Review.

    Get PDF
    Dysphagia is a common and frequently undetected complication of many neurological disorders and of sarcopoenia in ageing persons. Spontaneous swallowing frequency (SSF) has been mooted as a possible tool to classify dysphagia risk. We conducted a review of the literature to describe SSF in both the healthy population and in disease-specific populations, in order to consider its utility as a screening tool to identify dysphagia. We searched Medline, Embase, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials databases. Metadata were extracted, collated and analysed to give quantitative insight. Three hundred and twelve articles were retrieved, with 19 meeting inclusion and quality criteria. Heterogeneity between studies was high (I2 = 99%). Mean SSF in healthy younger sub-groups was 0.98/min [CI: 0.67; 1.42]. In the Parkinson’s sub-group, mean SSF was 0.59/min [0.40; 0.87]. Mean SSF in healthy older, higher risk and dysphagic populations were similar (0.21/min [0.09; 0.52], 0.26/min [0.10; 0.72] and 0.30/min [0.16; 0.54], respectively). SSF is a novel, non-invasive clinical variable which warrants further exploration as to its potential to identify persons at risk of dysphagia. Larger, well-conducted studies are needed to develop objective, standardised methods for detecting SSF, and develop normative values in healthy populations

    Observation of Coulomb-Assisted Dipole-Forbidden Intraexciton Transitions in Semiconductors

    Get PDF
    We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the 1s1s exciton emission, which we attribute to the terahertz-induced 1s1s-to-2p2p excitation. Simultaneously, a pronounced enhancement of the 2s2s-exciton emission is observed, despite the 1s1s-to-2s2s transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2ss and 2pp states, yielding an effective terahertz transition between the 1ss and 2ss populations.Comment: 5 pages, 3 figure

    A novel subsurface sediment plate method for quantifying sediment accumulation and erosion in seagrass meadows

    Get PDF
    Sediment dynamics in seagrass meadows are key determinants of carbon sequestration and storage, surface elevation, and resilience and recovery from disturbance. However, current methods for measuring sediment accumulation are limited. For example, 210Pb dating, the most popular tool for quantifying sediment accretion rates over decadal timescales, relies on assumptions often at odds with seagrass meadows. Here, we have developed a novel subsurface sediment plate method to detect changes in sediment accumulation and erosion in real time that: 1) is affordable and simple to implement, 2) can quantify short-term (weeks to months) sediment dynamics of accumulation and erosion, 3) is non-destructive and minimizes impacts to surface-level processes, and 4) can quantify long-term (years) net sediment accumulation rates. We deployed subsurface sediment plates at two sites within a 20 km2 seagrass meadow in the Virginia Coast Reserve Long-Term Ecological Research site, USA. Here, we discuss spatial and temporal trends in sediment dynamics over a 25-month period, the sediment accretion rates estimated using the subsurface sediment plate method compared to previous estimates based on 210Pb dating, the precision of the method, and our recommendations for implementing the method for measuring surface sediment dynamics in other seagrass settings. We recommend the application of this method for quantifying short- and long-term changes in seagrass surface sediments across various spatial scales to improve our understanding of disturbance, recovery, restoration, carbon cycling, sediment budgets, and the response of seagrasses to rising sea levels
    • …
    corecore