419 research outputs found

    Enhancing The Learning Environment Of Nursing Students Through Interprofessional Collaboration

    Get PDF
    The AACN position statement (1999) supports interprofessional collaboration. The development of innovative collaborative teaching methods within education may enhance the learning environment of students. Educational institutions utilize student evaluations as a method of listening to the voices of students, but research related to their use is limited. The purpose of this study was to explore the impact of interprofessional collaboration on nursing students’ perceptions of the online learning environment. An innovative collaborative teaching methodology was developed using a variety of disciplines, including physicians, pharmacists, chiropractic physicians, and nurses. Quantitative data analyses indicated a significant increase in student satisfaction with the online course as well as the online environment p < 0.05 following the establishment of the collaborative teaching methodology. Qualitative analysis illustrated enhanced satisfaction among students following the institution of interprofessional collaboration. Findings that view the learning environment through the lens of students’ eyes have many implications, including increased student and faculty satisfaction with the teaching/learning experience and enhanced collaboration among healthcare professionals. In addition, results may impact the curriculum by identifying a multidisciplinary approach to nursing education as an important resource. If we believe that students have a right to be active participants in their educational experiences, then we must give voice to their values, choices, concerns, and requests. A collaborative teaching methodology is one way to ensure that students’ voices are heard and acted upon, and it was found to be an innovative solution in meeting enrollment demands and healthcare needs. Collaborative relationships within nursing practice and nursing education are essential in the preparation of future nurses.

    Addendum of 2MW Wind Turbine to A Power with Directly-Driven Permanent Magnet Generation System

    Get PDF
    In recent years, wind turbine has become an acceptable alternative energy generation, because of the environmental and economic benefits. Notwithstanding more research works still need to be done to reduce wind turbine installation complexity, enhance profitability and reliability especially in developing countries like Nigeria. This paper presents the modeling and analysis of a 2MW variable-speed directly-driven permanent magnet synchronous generator (PMSG), Wind energy conversion system (WECS). The objective is to optimize the power captured from the wind, ensure optimum efficiency for power generation and reduce system hardware count. The mathematical model for the permanent magnet synchronous wind turbine and its power control algorithms are modified by removing the speed sensors. Further, enhancement was achieved by utilizing wind speed forecasts as the starting speed. A modified Field Orientation Control FOC and voltage orientation control VOC scheme were developed for the system using matlab Simulink CAD application. The Simulation results of the model for various changes in wind speed utilizing average wind speed data of Mmaku in Awgu local government area of Enugu state Nigeria. The developed system ability to ‘smoothen’ the power, voltage output and operates at the optimum coefficient of performance between the cut in speed of 3m/s and 12m/s without wind sensor is found to be promising, Key words: wind turbine, variable-speed, permanent magnet, synchronous generator, efficiency DOI: 10.7176/JETP/9-3-04 Publication date:March 31st 201

    A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses

    Get PDF
    Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs. We found related viruses in the genomes of diverse prokaryotes from geothermal environments, including other Asgard archaea. These viruses open research avenues into the ecology and evolution of Asgard archaea

    Chlamydial contribution to anaerobic metabolism during eukaryotic evolution

    Get PDF
    The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H-2 exchange. However, there are no strong indications that modern eukaryotic H-2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H-2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H-2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H-2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism

    Real-world keystroke dynamics are a potentially valid biomarker for clinical disability in multiple sclerosis

    Get PDF
    Background: Clinical measures in multiple sclerosis (MS) face limitations that may be overcome by utilising smartphone keyboard interactions acquired continuously and remotely during regular typing. Objective: The aim of this study was to determine the reliability and validity of keystroke dynamics to assess clinical aspects of MS. Methods: In total, 102 MS patients and 24 controls were included in this observational study. Keyboard interactions were obtained with the Neurokeys keyboard app. Eight timing-related keystroke features were assessed for reliability with intraclass correlation coefficients (ICCs); construct validity by analysing group differences (in fatigue, gadolinium-enhancing lesions on magnetic resonance imaging (MRI), and patients vs controls); and concurrent validity by correlating with disability measures. Results: Reliability was moderate in two (ICC = 0.601 and 0.742) and good to excellent in the remaining six features (ICC = 0.760–0.965). Patients had significantly higher keystroke latencies than controls. Latency between key presses correlated the highest with Expanded Disability Status Scale (r = 0.407) and latency between key releases with Nine-Hole Peg Test and Symbol Digit Modalities Test (ρ = 0.503 and r = −0.553, respectively), ps < 0.001. Conclusion: Keystroke dynamics were reliable, distinguished patients and controls, and were associated with clinical disability measures. Consequently, keystroke dynamics are a promising valid surrogate marker for clinical disability in MS

    Asgard archaea capable of anaerobic hydrocarbon cycling

    Get PDF
    Large reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbon-rich Guaymas Basin. The genomes encode methyl-CoM reductase-like enzymes that are similar to those found in butane-oxidizing archaea, as well as several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. We suggest that members of the Helarchaeota have the potential to activate and subsequently anaerobically oxidize hydrothermally generated short-chain hydrocarbons
    corecore