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Background
Most of the scientific problems and phenomena arise nonlinearly in various fields of 
mathematical physics and applied sciences, such as fluid mechanics, plasma physics, 
optical fibers, solid-state physics, and geochemistry. The investigation of travelling wave 
solutions (Shawagfeh 2002; Ray and Bera 2005; Yildirim et al. 2011; Kilbas et al. 2006; He 
and Li 2010; Momani and Al-Khaled 2005; Odibat and Momani 2007; Abdou 2007; Nas-
sar et al. 2011; Misirli and Gurefe 2011; Noor et al. 2008; Ozis and Koroglu 2008; Wu and 
He 2007; Yusufoglu 2008; Zhang 2007; Zhu 2007; Wang et al. 2008; Zayed et al. 2004; 
Sirendaoreji 2004; Ali 2011; Liang et  al. 2011; He et  al. 2012; Jawad et  al. 2010; Zhou 
et  al. 2003; Yıldırım and Kocak 2009; Elbeleze et  al. 2013; Matinfar and Saeidy 2010; 
Ahmad 2014; Bongsoo 2009; Demiray and Pandir 2014, 2015; Lu 2012; Zayed and Amer 
2014) of nonlinear evolution equations plays a significant role to look into the internal 
mechanism of nonlinear physical phenomena. Nonlinear fractional differential equa-
tions (FDEs) are a generalization of classical differential equations of integer order. The 
(FDEs) (Shawagfeh 2002; Ray and Bera 2005; Yildirim et al. 2011; Kilbas et al. 2006) have 
gained much importance due to exact interpretation of nonlinear phenomena. In recent 
years, considerable interest in fractional differential equations (He and Li 2010; Momani 
and Al-Khaled 2005; Odibat and Momani 2007) has been stimulated due to their numer-
ous applications in different fields. However, many effective and powerful methods have 
been established and improved to study soliton solutions of nonlinear equations, such 
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as extended tanh-function method (Abdou 2007), tanh-function method (Nassar et al. 
2011), Exp-function method (Misirli and Gurefe 2011; Noor et al. 2008; Ozis and Koro-
glu 2008; Wu and He 2007; Yusufoglu 2008; Zhang 2007; Zhu 2007), (G’/G)-expansion 
method (Wang et al. 2008), homogeneous balance method (Zayed et al. 2004), auxiliary 
equation method (Sirendaoreji 2004), Jacobi elliptic function method (Ali 2011), Weier-
strass elliptic function method (Liang et al. 2011), modified Exp-function method (He 
et al. 2012), modified simple equation method (Jawad et al. 2010), F-expansion method 
(Zhou et  al. 2003), homotopy perturbation method (Yıldırım and Kocak 2009), Frac-
tional variational iteration method (Elbeleze et  al. 2013), homotopy analysis method 
(Matinfar and Saeidy 2010), Reduced differential transform method (Ahmad 2014), 
Generalized Kudryashov method for time-fractional differential equations (Demiray and 
Pandir 2014), The first integral method for some time fractional differential equations(Lu 
2012; Zayed and Amer 2014), New solitary wave solutions of Maccari system (Demiray 
and Pandir 2015), and so on.

In the present paper, we applied the exp (−ϕ(η))-expansion method to construct the 
appropriate solutions of fractional Kawahara equation and demonstrate the straight-
forwardness of the method. The fractional derivatives are used in modified Rie-
mann–Liouville sense. The subject matter of this method is that the traveling wave 
solutions of nonlinear fractional differential equation can be expressed by a polynomial 
in exp (−ϕ(η)).

The article is organized as follows: In “Caputo’s fractional derivative” section, the 
exp (−ϕ(η))-expansion method is discussed. In “Description of exp (−ϕ(η)) expansion 
method” section, we exert the method to the nonlinear evolution equation pointed out 
above, in “Solution procedure” section, interpretation and graphical representation of 
results, and in “Graphical representation of the solutions” section conclusion and refer-
ences are given.

Caputo’s fractional derivative
In modelling physical phenomena, using differential equation of fractional order some 
drawbacks of Riemann–Liouville derivatives were observed In this section we set up the 
notations and recall some significant possessions.

Definition 1  A real function f(x), x > 0 is said to be in space Cα ,α ∈ ℜ, if there exists a 
real number p(>α), such that

Definition 2  A real function f(x), x > 0 is said to be in space Cm
α ,m ∈ N ∪ {0}, if f(m) ∊ Cα

Definition 3  Let f ∊ Cαand α ≥ −1, then the (left-sided) Riemann–Liouville integral of 
order µ,µ > 0 is given by

(1)
(

ϕ′(η)
)

= exp (−ϕ(η))+ µ exp (ϕ(η))+ �

(2)f (x) = xpf1(x), where f1(x) ∈ C[0,∞].

(3)
I
µ
t f (x, t) =

1

Γ (µ)

t
∫
0
(t − T)µ−1f (x, T)dT, t > 0.
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Definition 4  The (left sided) Caputo partial fractional derivative of f with respect to t, 
f ∈ Cm

−1,m ∈ N ∪ {0}, is defined as:

Note that 

Description of exp (−ϕ(η)) expansion method
Now we explain the exp (−ϕ(η))-expansion method for finding traveling wave solutions 
of nonlinear evolution equations. Let us consider the general nonlinear FPDE of the type

where Dα
t u,D

α
x u,D

α
xxu are the modified Riemann–Liouville derivatives of u with respect 

to t, x, xx respectively.
Using a transformation η = kx + ωtα

Γ (1+α)
+ η0, k ,ω, η0 are all constants with 

using the exp (−ϕ(η))-expansion method we have to follow the following steps.
Step1. Combining the real variables x and t by a compound variable η we assume

using the traveling wave variable Eqs. (10) and (8) is reduced to the following ODE for 
u = u(η)

where Q is a function of u(η) and its derivatives, prime denotes derivative with respect 
to η

Step2. Suppose the solution of Eq. (11) can be expressed by a polynomial in exp (−ϕ(η)) 
as follows

where an, an−1, . . . and V are constants to determined later such that an ≠ 0 and φ(η) 
satisfies equation Eq. (8)

Step3. By using the homogenous principal, we can evaluate the value of positive integer 
n between the highest order linear terms and nonlinear terms of the highest order in 

(4)D
µ
t f (x, t) =

∂m

∂tm
f (x, t), µ = m

(5)= I
m−µ
t

∂m

∂tm
f (x, t), m− 1 ≤ µ < m,m ∈ N

(6)I
µ
t D

µ
t f (x, t) = f (x, t)−

m−1
∑

k=0

∂k f

∂tk
(x, 0)

tk

k!
, m− 1 < µ ≤ m, m ∈ N

(7)I
µ
t t

ν =
Γ (ν + 1)

Γ (µ+ ν + 1)
tµ+ν .

(8)P
(

u,ut ,ux,uxx,uxxx, . . . ,D
α
t u,D

α
x u,D

α
xxu, . . .

)

= 0, 0 ≤ α ≤ 1,

(9)k ,ω �= 0

(10)u(x, t) = u(η),

(11)Q
(

u,u′,u′′,u′′′,u, . . .
)

= 0,

(12)u(η) = an(exp(−ϕ(η)))n + an−1(exp(−ϕ(η)))n−1 + · · · ,
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Eq. (11). Our solutions now depend on the parameters involved in Eq. (1). So Eq. (1) pro-
vides the solutions from (13) to (16)
Case 1 λ2 − 4μ > 0 and μ ≠ 0,

where c1 is a constant of integration.

Case 2 λ2 − 4μ < 0 and μ ≠ 0,

Case 3 μ = 0 and � �= 0,

Case 4 �2 − 4µ = 0, � �= 0, and μ ≠ 0,

Case 5 � = 0, and μ = 0,

Step4. Substitute Eq. (11) into Eq. (12) and using Eq. (1) the left hand side is converted 
into a polynomial in exp (−ϕ(η)), equating each coefficient of this polynomial to zero, 
we obtain a set of algebraic equations for an, . . . �,µ.

Step5. Eventually solving the algebraic system of equations obtained in step 4 by the use 
of Maple, we obtain the values of the constants an, . . . , � and μ. Substituting an,… and 
the general solution of Eq. (8) into solution Eq. (11), we obtain some valuable traveling 
wave solutions of Eq. (8).

Solution procedure
Consider the generalized form of fractional order nonlinear Kawahara equation.

where α,β and δ are some nonzero parameters, taking α = 1,β = 1 and δ = −1, the 
model equation is given as. We can convert equation Eq. (18) into an ordinary differen-
tial equation.

where the prime denotes the derivative with respect to η. Now integrating equation 
Eq. (19), we have,

(13)ϕ(η) = ln

{

1

2µ

(

−
√

�2 − 4µtanh

(
√

�2 − 4µ

2
(η + c1)

)

− �

)}

,

(14)ϕ(η) = ln

{

1

2µ

(

−�+
√

−�2 + 4µtan

(
√

−�2 + 4µ

2
(η + c1)

))}

,

(15)ϕ(η) = −ln

{

�

exp (�(η + c1))− 1

}

,

(16)ϕ(η) = ln

{

2(�(η + c1)+ 2)
(

�2(η + c1)
)

}

,

(17)ϕ(ξ) = ln(η + c1),

(18)Dα
t u+ βuux + αuxxx − δuxxxxx = 0, 0 < α ≤ 1

(19)−Vu′ + uu′ + u′′′ − u′′′′ = 0,
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Balancing the u′′′′ and u2 by using homogenous principal, we have

Then the trial solution of equation Eq. (19) can be expressed as follows,

where a4 �= 0, a0, a1, a2 and a3 are constants to determined, while λ, μ are arbitrary 
constants.

Substituting u,u′,u′′,u′′′,u′′′′,u2 into Eq.  (20) and then equating the coefficients 
of exp (−ϕ(η)) to zero, we get the set of algebraic equations, we obtain the following 
solution.

Solution 1 

where λ and μ are arbitrary constants.
Now substituting the values into Eq. (21), we obtain,

Now substituting Eq. (13), (14), (15), (16) and (17) into Eq. (23) respectively, we get the 
following five traveling wave solutions of the Kawahara equation.

Case 1 When �2 − 4µ > 0 and μ ≠ 0, we obtain the hyperbolic function traveling wave 
solution.

(20)−Vu+
1

2
u2 + u′′ − u′′′′ + C = 0,

2M = M + 4,

M = 4.

(21)
u(η) = a0+a1(exp(−ϕ(η)))+a2(exp(−ϕ(η)))2+a3(exp(−ϕ(η)))3+a4(exp(−ϕ(η)))4,

(22)































V = 1680µ2 − 36

169
− a0, a0 = a0, a1 = − 3360

13
µ2

√
676µ+ 13,

a2 = 1680
13

(1+ 78µ)µ2, � = − 1
13

√
676µ+ 13,

a3 = − 3360

13
µ3

√
676µ+ 13, a4 = 1680µ4,

C = − 60480

169
µ2 + 1411200µ4 − 1680µ2

a0 + 36

169
a0 + 1

2
+ a

2
0

,

(23)

u(η) = a0 +−
3360

13
µ2

√

676µ+ 13(exp(−ϕ(η)))+
1680

13
(1+ 78µ)µ2(exp(−ϕ(η)))2

−
3360

13
µ3

√

676µ+ 13(exp(−ϕ(η)))3 + 1680µ4,

(24)

u1(η) = a0 − 1680µ2 +
105

169

−
210

169
tanh

(

1

4394

(

169x +
283920tαµ2

Γ (α + 1)
−

36tα

Γ (α + 1)
−

169tαa0

Γ (α + 1)

)√
13

)2

+
105

169
tanh

(

1

4394

(

169x + 283920tαµ2

Γ (α+1)

− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

)

√
13

)4

,
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Case 2 When λ2 − 4μ < 0 and μ ≠ 0, we obtain trigonometric solution

Case 3 When μ = 0 and � �= 0, we obtain exponential solution.

Case 4 When �2 − 4µ = 0, � �= 0, and μ ≠ 0, we obtain rational function solution.

Case 5 when � = 0, and μ = 0, we obtain rational function solution.

(25)

u2(η) = a0 − 1680µ2 +
105

169

−
210

169
tanh

�

1

4394

�

169x +
283920tαµ2

Γ (α + 1)
−

36tα

Γ (α + 1)
−

169tαa0

Γ (α + 1)

�√
13

�2

+
105

169
tanh











1

4394











169x

+ 283920tαµ2

Γ (α+1)

− 36tα

Γ (α+1)

− 169tαa0
Γ (α+1)











√
13











4

,

(26)

u3(η) = 1/(52µ+ 1)2



a0 + 1135680µ4
e

−1
2197

√
676µ+13

�

169x+ 283920tαµ2

Γ (α+1)
− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

�

+ 43680µ3
e

−1
2197

√
676µ+13

�

169x+ 283920tαµ2

Γ (α+1)
− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

�

+ 1680µ2
e

−2
2197

√
676µ+13

�

169x+ 283920tαµ2

Γ (α+1)
− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

�

+ 1703520µ4
e

−2
2197

√
676µ+13

�

169x+ 283920tαµ2

Γ (α+1)
− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

�

+ · · · 87360µ3
e

−2
2197

√
676µ+13

�

169x+ 283920tαµ2

Γ (α+1)
− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

�

−4258800µ4 − 174720µ3



,

(27)
u4(η) =

−











− 84464623357806182400(tα)3µ6

Γ (α+1)3

+ 14434947944202240(tα)3µ4

Γ (α+1)3

+ · · · − 71262235786560
√
676µ+13a20(t

α)2µ2

Γ (α+1)2











�

√
676µ+ 13

�

169x + 283920tαµ2

Γ (α+1)

− 36tα

Γ (α+1)
− 169tαa0

Γ (α+1)

�

(52µ+ 1)4

� ,

(28)u5(η) = −
20160µ3

xt
α
a0

Γ (α + 1)
−
3360

13

µ2
xt

α
a0

Γ (α + 1)
−

26127360

28561

(tα)3a0µ
4
x

Γ (α + 1)3
+ · · ·

3360

13
µ2

√

676µ+ 13x
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Solution 2 

Solution 3 

Solution 4 

Similarly, we can find the other exact solution of remaining solutions, while one solution 
is analyzed.

Graphical representation of the solutions

The graphical illustrations of the solutions are given below in the figures with the aid of 
Maple.

Physical interpretation
The proposed method provides more general and abundant new solitary wave solutions 
with some free parameters. The traveling wave solutions have its extensive significance 
to interpret the inner structures of the natural phenomena. We have explained the dif-
ferent types of solitary wave solutions by setting the physical parameters as special val-
ues. In this paragraph, we will explain the physical elucidation of the solutions for the 
Kawahara equation for a0 = 11.1, µ = −0.0002, x = 15, α = 0.50,u1 shows the sin-
gular solitary wave solution as shown in Figs. 1, 2, 3). Figure 4 shows the shape of the 
singular kink wave solution of u2 for a0 = 5.1, µ = 0.002, x = 2, α = 0.75. Again sin-
gular Kink solution obtained in Fig. 5 of u2 for a0 = 5.1, µ = 0.002, x = 2, α = 0.50 
(Figs.  6, 7, 8, 9, 10, 11). Finally simple kink solution got from u5 for the choice of 
a0 = −2, µ = 14, x = 18,α = 0.75. which is shown in Fig. 12. In one asymptotic state 
to another asymptotic state, kink solitons are upsurge or descent. Such solitons are 
called topological solitons. The other exact solutions could be obtained from the remain-
ing solution sets.           

(29)







































V = 1680µ2 − 36

169
− a0, a0 = a0, a1 = 3360

13
µ
√
676µ+ 13,

a2 = 1680

13
+ 10080µ, � = 1

13

√
676µ+ 13,

a3 = 3360

13

√
676µ+ 13, a4 = 1680,

C = − 60480

169
µ2 + 1411200µ4 − 1680µ2

a0 + 36

169
a0 + 1

2
a
2
0

,

(30)















































V = 1680µ2 − 36

169
− a0, a0 = a0, a1 = − 3360

13
µ
√
676µ+ 13,

a2 = 1680
13

+ 10080µ, � = − 1
13

√
676µ+ 13,

a3 = − 3360
13

√
676µ+ 13, a4 = 1680,

C = − 60480
169

µ2 + 1411200µ4 − 1680µ2
a0 + 36

169
a0 + 1

2
a
2
0

,

(31)

{

V = 560µ2 − 280

13
µ− a0 + 4371

33800
− 483

33800
ι
√
31+ 14

845
µ

(

−2015+ 67600µ+ 195ι
√
31

)

, . . . ,

a0 = a0, a4 = 1680,
,
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Numerical discussion
We have obtained the exact solutions (29), (30) and (31) in the above study and to know 
the correctness we have matched those solutions with the exact solution (Bongsoo 
2009).We note that the absolute errors given in the tables from the solutions we have 
obtained are very precise and accurate.   

(32)u(x, t) =
420β

164αγ
[n(x, t)]

[

n(x, t)

2
+ 1

]2

Fig. 1  Singular solitary wave solution u1(η) when a0 = 11.1,µ = −0.0002, x = 15,α = 0.25

Fig. 2  Singular solitary wave solution u1(η) when a0 = 11.1,µ = −0.0002, x = 15,α = 0.50.
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where

(33)n(x, t) =
1−

{

cosh
[√

β
13γ

(

x − 36β2t
169γ +m

)]

+
√

p2 + 1
}

{

sinh
[√

β
13γ

(

x − 36β2t
169γ +m

)]

+ p
}

Fig. 3  Comparison of solutions for different values of α

Fig. 4  Singular Kink wave solution u2(η) when a0 = 5.1, µ = 0.002, x = 2, α = 0.50
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Conclusion
With the help of a suitable transformation and the exp (−ϕ(η))-expansion method, 
we obtained different types of exact solutions for fractional Kawahara equation. The 
obtained results show that the proposed technique is effective and capable for solving 
nonlinear fractional partial differential equations. In this research, some exact solitary 
wave solutions, mostly solitons and kinks solutions are obtained through the hyperbolic, 

Fig. 5  Singular Kink wave solution u2(η) when a0 = 5.1, µ = 0.002, x = 2, α = 0.75

Fig. 6  Comparison of solutions for different values of α
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Fig. 7  Singular Kink wave solution u3(η) when a0 = 0.0001, µ = 0.001, x = 6, α = 0.25

Fig. 8  Singular Kink wave solution u3(η) when a0 = 0.0001, µ = 0.001, x = 6, α = 0.15

Fig. 9  Singular solitary wave solution u4 when a0 = 0.01, µ = 0.001, x = 0.1, α = 0.50
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Fig. 10  Singular solitary wave solution u4 when a0 = 0.01, µ = 0.001, x = 0.1, α = 0.25

Fig. 11  Singular Kink wave solution u5(η) when a0 = −2,µ = 14, x = 18α = 1.00

Fig. 12  Singular Kink wave solution u5(η) when a0 = −2,µ = 14, x = 18α = 0.75.
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trigonometric, exponential and rational functions. It is observed that the proposed 
method fully validate the competence and reliability of computational work as evident 
from Tables 1, 2 and 3 and may be utilized for other physical problems.
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Table 2  Comparison of absolute errors obtained by (30) with the exact solution (32) when

x\t 0.5 1 1.5 2 2.5

0.5 2.80883E−05 2.69054E−05 2.57900E−05 2.47385E−05 2.37470E−05
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2.5 6.74652E−05 6.39005E−05 6.05389E−05 5.73689E−05 5.43796E−05

Table 3  Comparison of absolute errors obtained by (31) with the exact solution (32) when

x\t 0.5 1 1.5 2 2.5

0.5 1.11802E−02 1.10649E−02 1.09508E−02 1.08381E−02 1.07266E−02

1.0 1.08009E−02 1.06829E−02 1.05663E−02 1.04512E−02 1.03374E−02

1.5 1.03542E−02 1.02348E−02 1.01170E−02 1.00008E−02 9.88610E−03

2.0 9.84771E−03 9.72834E−03 9.61069E−03 9.49476E−03 9.38053E−03

2.5 9.28994E−03 9.17198E−03 9.05588E−03 8.94165E−03 8.82927E−03
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