
Gulf of Mexico Science
Volume 29
Number 2 Number 2 Article 4

2011

Loss of Structural Complexity in Staghorn Coral
Rubble Habitats Influences the Density of
Damselfish in Dry Tortugas National Park, Florida,
USA
Jeffrey M. Grim
Northeastern University

John Eme
University of North Texas

Jennie S. Rohrer
Texas Parks and Wildlife Department

Erin Ferer
Virginia Institute of Marine Science

Allison A. Wilkes
Texas A&M University

et al.

DOI: 10.18785/goms.2902.04
Follow this and additional works at: https://aquila.usm.edu/goms

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science
by an authorized editor of The Aquila Digital Community. For more information, please contact Joshua.Cromwell@usm.edu.

Recommended Citation
Grim, J. M., J. Eme, J. S. Rohrer, E. Ferer, A. A. Wilkes, R. E. Wilborn, K. Radzik, R. L. Croker, A. J. O'Farrell, C. M. Pomory and W. A.
Bennett. 2011. Loss of Structural Complexity in Staghorn Coral Rubble Habitats Influences the Density of Damselfish in Dry
Tortugas National Park, Florida, USA. Gulf of Mexico Science 29 (2).
Retrieved from https://aquila.usm.edu/goms/vol29/iss2/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aquila Digital Community

https://core.ac.uk/display/301291592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aquila.usm.edu/goms?utm_source=aquila.usm.edu%2Fgoms%2Fvol29%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/goms/vol29?utm_source=aquila.usm.edu%2Fgoms%2Fvol29%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/goms/vol29/iss2?utm_source=aquila.usm.edu%2Fgoms%2Fvol29%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/goms/vol29/iss2/4?utm_source=aquila.usm.edu%2Fgoms%2Fvol29%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aquila.usm.edu/goms?utm_source=aquila.usm.edu%2Fgoms%2Fvol29%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


SHORT PAPERS AND NOTES

Gulf of Mexico Science, 2011(2), pp. 113–118

E 2011 by the Marine Environmental Sciences
Consortium of Alabama

LOSS OF STRUCTURAL COMPLEXITY IN
STAGHORN CORAL RUBBLE HABITATS IN-
FLUENCES THE DENSITY OF DAMSELFISH
IN DRY TORTUGAS NATIONAL PARK,
FLORIDA, USA.—Damselfishes (Family: Poma-
centridae) are a group of keystone species that
influence reef ecology and diversity and are
considered good indicators of overall reef health
(Longley and Hildebrand, 1941; Emery, 1973;
Williams, 1980; Hixon and Brostoff, 1983;
Aronson and Precht, 1997; Lieske and Meyers,
1999). Many damselfishes are syntopic as well as
sympatric, and species can be intensely territori-
al, directly competing for resources with con-
familials or other fishes (Allen, 1991). Several
species maintain and defend algal gardens,
which can indirectly affect both corals and fishes
(Birkeland, 1977; Hixon and Brostoff, 1983). As
a result, damselfishes play a key role in shaping
the ecology of coral reefs worldwide (Williams,
1980; Hixon and Brostoff, 1983; Lieske and
Myers, 1999).

Quantification of live coral reef habitat utili-
zation by reef fishes, including damselfishes,
reveals that decreased rugosity may influence
coral reef fish diversity and abundance world-
wide (e.g., Luckhurst and Luckhurst, 1978;
Clark, 1996; Lirman, 1999; Holbrook et al.,
2000; Jones et al., 2004; Gratwicke and Speight,
2005). Thus far, reports of damselfish abun-
dance within the Gulf of Mexico have generally
been limited to the ecology of damselfishes
occupying moderately affected or pristine low-
energy patch reefs (e.g., Emery, 1973; Wallman
et al., 2004; Precht et al., 2010). Previously, we
reported that damselfish densities vary signifi-
cantly between live strands of very highly rugose
staghorn coral (Acropora cervicornis) and dead,
very-low-rugosity A. cervicornis rubble (Wilkes et
al., 2008). Although previous work by our group
and others has addressed differences in damsel-
fish abundance and diversity between the ex-
treme habitat conditions (live, highly rugose vs
low live cover/dead, low-rugosity habitats), the
relationship over a continuum of coral rubble
rugosity and fish abundance, however, is not
clearly established (e.g., Luckhurst and Luc-
khurst, 1978; McCormick, 1994; Gratwicke and
Speight, 2005).

The loss of three-dimensional structure as
dead coral collapses is a striking and ongoing

situation in the Dry Tortugas National Park
(DTNP), which boasts one of the largest and
most pristine reef systems in the continental
United States. Coral reefs of DTNP were domi-
nated by large, monotypic strands of A. cervicornis
that supported a diversity of fish typical of the
Caribbean (Longley and Hildebrand, 1941).
Over the past 40 yrs, however, cold events,
storms, and disease outbreaks have essentially
eliminated live staghorn coral, A. cervicornis,
within DTNP (Davis, 1982; Bohnsack, 1983).

In the current study, we exploited the lack of live
A. cervicornis within DTNP, low cover of macro-
algae, similar physical characteristics of DTNP
reefs, and the lack of fishing pressure (all factors
that are known to influence the dynamics of reef
fishes) to isolate the effects of habitat rugosity on
the abundance and diversity of a keystone fish
family Pomacentridae (damselfishes). We hypoth-
esized that coral rubble habitats within DTNP may
contain varying levels of habitat rugosity and that
damselfish densities within DTNP would decrease
with declines in coral rubble habitat rugosity.
Additionally, we hypothesized that not all damsel-
fishes would respond similarly to decreases in
habitat rugosity, with the densities of the largest-
bodied fishes being affected to a greater extent
than smaller-bodied species as habitat rugosity
decreases. To test these hypotheses, we utilized a
modified chain-and-tape method to quantify
three-dimensional structure of A. cervicornis rubble
and estimated the species-specific density for five
common Caribbean damselfishes on belt transects
within DTNP. This study provides novel insight
into the utilization of compacted coral rubble
habitats by damselfishes within DTNP, and may
provide useful information for the management of
reef habitats, with the goal of maintaining fish
diversity typical of healthy coral reefs.

Materials and methods.—We utilized belt transects
to quantify habitat rugosity in three coral rubble
habitats located within DTNP from 16–22 May
2005. A modified chain-and-tape method (Risk,
1972, reviewed by McMormick, 1994) was used to
assess the structural complexity (rugosity) at
each of the three sites. Site rugosity was
estimated as:

1{ length of a 1-m chain as it followed theð

substratum contour=the straight-line length

of the chainÞ|100 ð1Þ
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with relatively flat surfaces (low rugosity) having
rugosity values near 0 and topographically
complex sites (high rugosity) having rugosity
values approaching 100. As we previously report-
ed (Wilkes et al. 2008), site 1 (24u22918.60N
82u52918.10W) contained the skeletal remains of
the last living stand of A. cervicornis in DTNP.
Coral rubble at this site was attached to the
substratum in its original upright position, and
represented high structural complexity. Site 2
(24u22944.10N 82u33918.50W) contained collaps-
ing A. cervicornis rubble, which retained substan-
tial three-dimensional structure representing
intermediate structural complexity. Site 3
(24u22910.60N 82u31922.10W) was dominated by
A. cervicornis rubble, which had almost complete-
ly collapsed, representing low structural com-
plexity. With the exception of differences in
habitat rugosity, sites were otherwise similar, and
the study sites were within 3 km of each other
(Fig. 1). The range of rugosities being studied is
naturally occurring within DTNP, and therefore
could not otherwise be manipulated to avoid
spatial segregation of sites. Spatial separation of
sites for this reason is not an uncommon
occurrence in these types of studies (e.g.,
Öhman and Rajasuriya, 1998).

Within each of the three study sites, the
densities (fish?m22) of five damselfishes were
estimated during daylight hours using 10-m 3 1-m
belt transects haphazardly placed at approximate-
ly 2-m depth. Transect length was based on the
ability to fit an individual transect in an area with
the same level of rugosity and water depth while
maintaining distances between transects greater
than fish territory sizes. Transects were spaced .

5 m apart, and territory sizes for the species
counted are normally much less than the distance
between any two transects (Allen, 1991). There-
fore transects were treated as independent repli-
cates relative to the density of fish vs rubble
complexity question.

Two snorkelers swimming shoulder to shoul-
der swam each 10-m 3 1-m belt transect at a rate
of 1 m?min21, with one team per transect at any
one time. Two snorkelers swimming in this
manner while maintaining the transect line as
the midline between them spanned approxi-
mately 1 m. This approach was used to standard-
ize the area sampled (1 m total 2 0.5 m on either
side of the transect) by each team. Each of the
four teams of two snorkelers enumerated the five
most common damselfishes inhabiting DTNP
(Longley and Hildebrand, 1941): beaugregory
(Stegastes leucostictus), cocoa (S. variabilis), dusky
(S. fuscus), three-spot (S. planifrons), and yellow-
tail (Microspathodon chrysurus) by counting indi-
viduals within 0.5 m of either side of the transect

line. Body shape, fin characteristics, and colora-
tion patterns were used to identify damselfish to
species level following Smith (2002). Each
snorkeling team represented a single transect
replicate. A mean count of damselfishes from all
four teams was used as a single datum represent-
ing each transect. A total of 16 transects were
sampled in this manner at sites 1 and 2, and 12
transects were sampled at site 3.

One-way analysis of variance (ANOVA) or
Kruskal–Wallis tests were used to compare
rugosity measures, density of total damselfish,
and density of damselfish by species among the
three sites. Significant ANOVA or Kruskal–Wallis
analyses were followed by Tukey’s or Dunn’s post
hoc tests, respectively. Statistical determinations
of site rugosity and density of total damselfish
were evaluated using a 5 0.05, and the density of
individual damselfish species were compared at a
5 0.01 to control for type I error.

Results.—The relative rugosity of A. cervicornis
rubble differs by location within the boundaries
of DTNP. The study sites examined in the
current work contained three distinct levels of
structural rugosity (ANOVA; F2,12 5 700, P ,

0.0001), including high-, medium-, and low-
rugosity A. cervicornis rubble (Fig. 2).

The total densities of damselfishes varied
among the three study sites (Fig. 3). Total
density of damselfishes was approximately 2-
and 3.3-times greater on high-rugosity transects
than either medium- or low-rugosity transects,
respectively (Kruskal–Wallis; H3 5 34.94, P ,

0.001).
Four of the five damselfish species sampled

were observed within all levels of rugosity, with
greatest densities for most species on high-
rugosity transects (Fig. 3). Mean density of S.
leucostictus was comparable between high- and
low-rugosity transects, which were on average two
times greater than on medium-rugosity transects
(ANOVA; F2,41 5 26.95, P , 0.0001; Fig. 3).

Fig. 1. Dry Tortugas National Park (DTNP), FL.
Selected keys from the park are magnified with study-
site locations denoted by an asterisk (*). DTNP is
approximately 113 km west of Key West, FL.
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Mean density of S. variabilis was over five times
greater on high-rugosity transects relative to
medium- and low-rugosity rubbles (Kruskal–
Wallis; H3 5 21.05, P , 0.0001; Fig. 3). Mean
density of S. fuscus was 7.5–times greater on
medium-rugosity transects relative to low-rugos-
ity transects, with high-rugosity transects in
between (Kruskal–Wallis; H3 5 19.21, P ,

0.0001; Fig. 3). S. planifrons showed the largest
change in mean density, with an over 20–times
increase in high-rugosity transects relative to
medium- and low-rugosity rubbles (Kruskal–
Wallis; H3 5 20.06, P , 0.0001; Fig. 3). Finally,
the mean density of M. chrysurus was 4.3–times
greater on high-rugosity transects relative to
medium-rugosity transects (Kruskal–Wallis; H3

5 30.08, P , 0.0001; Fig. 3). Notably, M.
chrysurus was absent in the low-rugosity site.

Discussion.—Over the past 40 yrs, live A. cervicor-
nis within DTNP has become nonexistent, and
consequently coral rubble has become increas-
ingly common. A declining abundance of
healthy A. cervicornis over its entire range led
the National Oceanic and Atmospheric Admin-
istration (U.S.A.) to classify the species as
threatened under the Endangered Species Act
(Hogarth, 2006). Following a previous trip to
DTNP in 2004, we reported that only a single
patch (65 m2) of live A. cervicornis remained in
shallow water from the once-extensive (44 ha)
staghorn coral formations that surrounded the
Dry Tortugas platform (Agassiz, 1883; Wilkes et
al., 2008). We now report that this remaining
patch of live A. cervicornis is dead, and is
beginning to lose structural complexity.

Results from the current work support our
hypothesis that A. cervicornis rubble within DTNP
contains varying degrees of rugosity. The col-

lapse of live coral into varying degrees of less
structurally complex rubble is a gradual process,
with the amount of degradation related to biotic
factors (e.g., abundance of corallivores and
herbivores), exposure to chronic wave action,
destructive storms, human impact, and time
from initial death (Huston, 1985; Rasser and
Riegl, 2002; Lesser, 2004). Unless balanced by
coral growth and recruitment, areas with dead
coral generally become less rugose over time,
resulting in decreasing structural complexity of
available microhabitats. The study sites are
generally similar with regard to the abiotic
factors discussed above, and as a result, the wide
range of habitat rugosities we report for spatially
proximate A. cervicornis rubbles within DTNP
(Fig. 2) is probably explained by differences in
time since coral death. Unfortunately, it seems
likely that both the loss of structural complexity
and damselfish abundance and diversity within
DTNP is inevitable as the distance from neigh-
boring reefs leaves little potential for recruit-
ment of either coral or damselfishes (Hughes,
1985; Ayre and Hughes, 2004; Allen, 1991;
Cowen et al., 2006).

As hypothesized, decreased rugosity of A.
cervicornis habitats within DTNP was accompa-
nied by dramatic declines in the total density of
damselfishes (Fig. 3). The most likely explana-
tion for this observation is that the three-
dimensional structure of A. cervicornis provides
a refuge from predation, and the differential use
of space by fishes, partly on the basis of size of
the species and life history stage, can affect
species composition (Chabanet et al., 1997;
Nemeth, 1998; Holbrook et al. 2002; Almany,
2004; Mateo and Tobias, 2004; Gratwicke and
Speight, 2005). Additionally, we have shown that
intermediate levels of coral rubble rugosity are
accompanied by intermediate declines in dam-
selfish abundance. These data provide some of
the first evidence that damselfish communities
change gradually as reef habitats are degrading.
When densities of individual damselfishes are
examined (Fig. 3), it appears that the interme-
diate changes in total damselfish density dis-
cussed above are likely driven by an increased
density of S. fuscus in medium-rugosity habitats,
relative to low-rugosity sites. Furthermore, the
magnitude of loss in damselfish density in low-
rugosity habitats is likely obscured because
densities of S. leucostictus in low-rugosity habitats
were similar to values from high-rugosity sites
(Fig. 3).

Although the densities of damselfishes in total
declined with a loss of habitat rugosity within
DTNP, as hypothesized, not all species were
equally affected. Densities of all damselfishes

Fig. 2. Rugosity values for Acropora cervicornis coral
rubble in three study sites within Dry Tortugas National
Park, Florida. Values are reported as mean 6 SEM.
Differences in rugosity among sites are indicated by
superscript letters.
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except S. leucostictus were markedly reduced in
low-rugosity habitats, and the loss of structural
complexity had the largest impact on M.
chrysurus. This species was completely excluded
from low-rugosity habitats, which is likely a
function of the species’ relatively large body
compared with the other damselfishes. Conse-
quently the low-rugosity rubble probably lacked
the appropriate amount of space or ‘‘holes’’ to
accommodate the larger-bodied adult fish. All
other damselfish species investigated are similar
in size to one another and therefore the

decreasing amount of suitably sized habitat
cannot alone explain the differences in density
among individual damselfishes.

Biological interactions, possibly including in-
terspecific competition between damselfishes,
may play a role in shaping population structure
and dynamics as reefs continue to degrade
( Jones, 1987, Medeiros et al., 2010). Resident
fishes that can effectively utilize low-rugosity
coral rubble habitats will likely sustain damselfish
populations within DTNP. On the basis of data
from previous (Wilkes et al., 2008) and current

Fig. 3. Density of damselfishes on three levels of structurally complex (rugosity) staghorn coral, Acropora
cervicornis, rubble in Dry Tortugas National Park, FL. Values are reported as mean 6 SEM. Differences in density
among sites are indicated by superscript letters.
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work, we would predict that low-rugosity rubble
habitats will be dominated by S. leucostictus and to
a lesser extent S. fuscus. Although other species
(i.e., S. variabilis and S. planifrons) may be
recruited from nearby live patch reefs within
DTNP (Wallman et al., 2004), the data suggest
that these species may not thrive in newly formed
low-rugosity habitats.

The results from the current study provide a
direct link between structural complexity of
rubble habitats and density of reef fishes
(damselfishes). Although several factors in addi-
tion to structural complexity have been previ-
ously linked to reef fish density, including the
nearby presence of live coral, benthic macro-
algae, depth, fish community, and relative
fishing pressure (Bell and Grazin, 1984; Chaba-
net et al., 1997; Öhman and Rajasuriya, 1998;
Jones et al., 2004; Nagelkerken et al., 2005;
Medeiros et al. 2010; Precht et al. 2010), these
factors are similar between our study sites (J.
Grim et al., unpubl.). As a consequence, our
study sites allowed us to test directly the effects of
structural complexity on damselfish abundance
and diversity. It seems likely that the diversity and
abundance of the coral reef ecosystems con-
tained within DTNP will progressively decline as
the compaction of rubble habitats continues,
and that the loss of both coral and damselfishes
may ultimately result in changes to fish recruit-
ment patterns in DTNP and other Caribbean
reefs that are progressively degrading (Forrester,
1990; Jones, 1990; Jennings, 2001).

Acknowledgments.—Funding provided by Florida
Institute of Oceanography and University of
West Florida Department of Biology to WAB.
Work was conducted under NPS permit #DRTO-
2005-SCI-0004 and UWF ACUC protocol #2005-
001. We extend our sincerest gratitude to the
National Park Service, DTNP Rangers, and the
crew and masters of the RV Bellows (Florida
Institute of Oceanography).

LITERATURE CITED

AGASSIZ, A. 1883. Explorations of the surface fauna of
the Gulf Stream, under the auspices of the United
States Coast Survey. II. The Tortugas and Florida
Reefs. Mem. Am. Acad. Arts Sci. Cent. 2:107–132.

ALLEN, G. R. (ED.). 1991. Damselfishes of the world.
Mergus Publishers Hans A. Baensch, Melle, Germany.

ALMANY, G. R. 2004. Does increased habitat complexity
reduce predation and competition in coral reef fish
assemblages? Oikos 106:275–284.

ARONSON, R. B., AND W. F. PRECHT. 1997. Stasis,
biological disturbance, and community structure of
a holocene reef. Paleobiology. 223:326–346.

AYRE, D. J., AND T. P. HUGHES. 2004. Climate change,
genotypic diversity and gene flow in reef-building
corals. Ecol. Lett. 7:273–278.

BELL, J. D., AND R. GRAZIN. 1984. Influence of live coral
cover on coral-reef fish communities. Mar. Ecol.
Prog. Ser. 15:265–274.

BIRKELAND, C. 1977. The importance of rate of biomass
accumulation in early successional stages of benthic
communities to the survival of coral recruits. In:
Proceedings of the Third International Coral Reef
Symposium. Miami, FL1:331–336.

BOHNSACK, J. A. 1983. Resiliency of reef fish communi-
ties in the Florida Keys following a January 1977
hypothermal fish kill. Environ. Biol. Fishes 9:41–53.

CHABANET, P., H. RALAMBONDRAINY, M. AMANIEU, G. FAURE,
AND R. GALZIN. 1997. Relationship between coral reef
substrata and fish. Coral Reefs 16:93–102.

CLARK, R. D. 1996. Population shifts in two competing
fish species on a degrading coral reef. Mar. Ecol.
Prog. Ser. 137:51–58.

COWEN, R. K., C. B. PARIS, AND A. SRINIVASAN. 2006.
Scaling of connectivity in marine populations.
Science 311:522–527.

DAVIS, G. E. 1982. A century of natural change in coral
distribution at the Dry Tortugas: a comparison of
reef maps from 1881 and 1976. Bull. Mar. Sci.
32:608–623.

EMERY, A. R. 1973. Comparative ecology and functional
osteology of fourteen species of damselfish (Pisces:
Pomacentridae) at Alligator Reef, Florida Keys. Bull.
Mar. Sci. 23:649–770.

FORRESTER, G. E. 1990. Factors influencing the juvenile
demography of a coral reef fish. Ecology
71:1666–1681.

GRATWICKE, B., AND M. R. SPEIGHT. 2005. The relationship
between fish species richness, abundance and habitat
complexity in a range of shallow tropical marine
habitats. J. Fish. Biol. 66:650–667.

HIXON, M. A., AND W. N. BROSTOFF. 1983. Damselfish as
keystone species in reverse: intermediate disturbance
and diversity on reef algae. Science 220:511–513.

HOGARTH, W. T. 2006. Endangered and threatened
species: final listing determinations for elkhorn coral
and staghorn coral. Fed. Reg. 71:26852–26861.

HOLBROOK, S. J., A. J. BROOKS, AND R. J. SCHMITT. 2002.
Variation in structural attributes of patch-forming
corals and in patterns of associated fishes. Mar.
Fresh. Res. 53:1045–1053.

———, G. E. FORRESTER, AND R. J. SCHMITT. 2000. Spatial
patterns in abundance of a damselfish reflect
availability of suitable habitat. Oecologia 122:
109–120.

HUGHES, T. P. 1985. Life histories and population
dynamics of early successional corals. Proceedings
5th Int. Coral Reef Congr. 4:101–106.

HUSTON, M. A. 1985. Patterns of species diversity on
coral reefs. Ann. Rev. Ecol. Sys. 16:149–177.

JENNINGS, S. 2001. Patterns and prediction of popula-
tion recovery in marine reserves. Rev. Fish. Biol.
Fisheries 10:209–231.

JONES, G. P. 1987. Some interactions between residents
and recruits in two coral reef fishes. J. Exp. Mar. Biol
Ecol. 114:169–182.

SHORT PAPERS AND NOTES 117

5

Grim et al.: Loss of Structural Complexity in Staghorn Coral Rubble Habitats I

Published by The Aquila Digital Community, 2011



———. 1990. The importance of recruitment to the
dynamics of a coral reef fish population. Ecology
71:1691–1698.

———, M. I. MCCORMICK, M. SRINIVASAN, AND J. V. EAGLE.
2004. Coral decline threatens fish biodiversity in
marine reserves. Proc. Natl. Acad. Sci. USA 101:
8251–8253.

LESSER, M. P. 2004. Experimental biology of coral reef
ecosystems. J. Exp. Mar. Bio. Ecol. 300:217–252.

LIESKE, E., AND R. MYERS (EDS.). 1999. Coral reef fishes:
Caribbean, Indian Ocean, and Pacific including the
Red Sea. Princeton Univ. Press, Princeton, NJ.

LIRMAN, D. 1999. Reef fish communities associated with
Acropora palmata: relationships to benthic attributes.
Bull. Mar. Sci. 65:235–252.

LONGLEY, W. H., AND S. F. HILDEBRAND (EDS.). 1941.
Systematic catalogue of the fishes of Tortugas,
Florida: with observations on color, habits, and local
distribution. Carnegie Institution of Washington
Publication, Washington, DC.

LUCKHURST, B. E., AND K. LUCKHURST. 1978. Analysis of
the influence of substrate variables on coral reef fish
communities. Mar. Biol. 49:317–323.

MATEO, I., AND W. J. TOBIAS. 2004. Survey of nearshore
fish communities on tropical backreef lagoons on
the southeastern coast of St. Croix. Car. J. Sci.
40:327–342.

MEDEIROS, P. R., A. T. SOUZA, AND M. I. ILARRI. 2010.
Habitat use and behavioural ecology of the juveniles
of two sympatric damselfishes (Actinopterygii: Po-
macentridae) in the south-western Atlantic Ocean. J.
Fish Biol. 77:1599–1615.

MCCORMICK, M. 1994. Comparison of field methods for
measuring surface topography and their associations
with a tropical reef fish assemblage. Mar. Ecol. Prog.
Ser. 112:87–96.

NAGELKERKEN, I., K. VERMONDEN, O. C. C. MORAES, A. O.
DEBROT, AND W. P. NAGELKERKEN. 2005. Changes in
coral reef communities and an associated reef fish
species, Cephalopholis cruentata (Lacépède), after
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