91 research outputs found

    Regulation of Carcinogenesis by IL-5 and CCL11: A Potential Role for Eosinophils in Tumor Immune Surveillance

    Get PDF
    The role of the immune system in the surveillance of transformed cells has seen a resurgence of interest in the last 10 years, with a substantial body of data in mice and humans supporting a role for the immune system in host protection from tumor development and in shaping tumor immunogenicity. A number of earlier studies have demonstrated that eosinophils, when recruited into tumors, can very effectively eradicate transplantable tumors. In this study, we investigated whether eosinophils also play a role in tumor immune surveillance by determining the incidence of methylcholanthrene (MCA)-induced flbrosarcomas in IL-5 transgenic mice that have greatly enhanced levels of circulating eosinophils, CCL11 (eotaxin-l)-deficient mice that lack a key chemokine that recruits eosinophils into tissues, and the eosinophil-deficient mouse strains, IL-5/CCL11-/- and ΔdblGATA. It was found that MCA-induced tumor incidence and growth were significantly attenuated in IL-5 transgenic mice of both the BALB/c and C57BL/6 backgrounds. Histological examination revealed that the protective effect of IL-5 was associated with massively enhanced numbers of eosinophils within and surrounding tumors. Conversely, there was a higher tumor incidence in CCL11-/- BALB/c mice, which was associated with a reduced eosinophil influx into tumors. This correlation was confirmed in the eosinephil-deficient IL-5/CCL11-/- and ΔdblGATA mouse strains, where tumor incidence was greatly increased in the total absence of eosinophils. In addition, subsequent in vitro studies found that eosinophils could directly kill MCA-induced fibrosarcoma cells. Collectively, our data support a potential role for the eosinophil as an effector cell in tumor immune surveillance

    The science consultancy project – Improving students perceived employability skills through a school placement unit

    Get PDF
    General graduate attributes are among some of the key skills that students in tertiary education develop so that they can increase their competitiveness in the workforce. There is currently a push for work integrated learning (WIL), with particular attention put towards placements, within the tertiary education sector to enable more work ready graduates from universities (Department of Industry, 2014). WIL has been shown to enhance students’ transferable skills by putting them in real world context. (Jackson, 2015) The traditional work placement has been to engage with industry. However, finding placements within industry is challenging. To meet the demand of student work placements the Faculty of Science at the University of Western Australia designed a unit where students act as a consultant to a primary or high school teacher that wanted a particular resource created for their science class. This presentation will describe the development of the unit, the assessment tasks and face-to-face interactions within the unit. Moreover, the reflection of students towards their project and time as a consultant provides valuable insight into the range of employability skills that students development within this unit

    Supernatants from lymphocytes stimulated with Bacillus Calmette-Guerin can modify the antigenicity of tumours and stimulate allogeneic T-cell responses

    Get PDF
    BACKGROUND: Reduced expression of class 1 human leucocyte antigens (HLA1) is often a mechanism by which tumours evade surveillance by the host immune system. This is often associated with an immune function that is unable to mount appropriate responses against disease, which can result in a state that favours carcinogenesis. METHODS: In the current study, we have explored the effects of Bacillus Calmette-Guerin (BCG) on the cytokine output of leucocytes, which is a key determinant in generating antitumour action, and have also assessed the effect of these cytokine cocktails on HLA1 expression in solid tumour cell lines. RESULTS: BCG potently activated a broad range of leucocytes, and also enhanced the production of cytokines that were Th(1)-predominant. Supernatants from BCG-treated leucocytes significantly increased the expression of HLA1 on the surface of cancer cell lines, which correlated with increased cytolytic T-cell activity. We also showed that the increased HLA1 expression was associated with activation of intracellular signalling pathways, which was triggered by the increases in the Th(1)-cytokines interferon-γ and tumour necrosis factor-α, as counteracting their effects negated the enhancement. CONCLUSION: These studies reaffirm the role of BCG as a putative immunotherapy through their cytokine-modifying effects on leucocytes and their capacity to enhance tumour visibility

    Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation

    Get PDF
    T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN–AMPK metabolic signaling nexus essential for selectively promoting Tfh responses

    DECTIN-1: A modifier protein in CTLA-4 haploinsufficiency.

    Get PDF
    Autosomal dominant loss-of-function (LoF) variants in cytotoxic T-lymphocyte associated protein 4 (CTLA4) cause immune dysregulation with autoimmunity, immunodeficiency and lymphoproliferation (IDAIL). Incomplete penetrance and variable expressivity are characteristic of IDAIL caused by CTLA-4 haploinsufficiency (CTLA-4h), pointing to a role for genetic modifiers. Here, we describe an IDAIL proband carrying a maternally inherited pathogenic CTLA4 variant and a paternally inherited rare LoF missense variant in CLEC7A, which encodes for the ÎČ-glucan pattern recognition receptor DECTIN-1. The CLEC7A variant led to a loss of DECTIN-1 dimerization and surface expression. Notably, DECTIN-1 stimulation promoted human and mouse regulatory T cell (Treg) differentiation from naĂŻve αÎČ and γΎ T cells, even in the absence of transforming growth factor-ÎČ. Consistent with DECTIN-1's Treg-boosting ability, partial DECTIN-1 deficiency exacerbated the Treg defect conferred by CTL4-4h. DECTIN-1/CLEC7A emerges as a modifier gene in CTLA-4h, increasing expressivity of CTLA4 variants and acting in functional epistasis with CTLA-4 to maintain immune homeostasis and tolerance.S

    TLR7 gain-of-function genetic variation causes human lupus

    Get PDF
    Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA and binds to guanosine. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP1 and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition

    TLR7 gain-of-function genetic variation causes human lupus

    Get PDF
    Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.Grant J. Brown, Pablo F. Cañete, Hao Wang, Arti Medhavy, Josiah Bones, Jonathan A. Roco, Yuke He, Yuting Qin, Jean Cappello, Julia I. Ellyard, Katharine Bassett, Qian Shen, Gaetan Burgio, Yaoyuan Zhang, Cynthia Turnbull, Xiangpeng Meng, Phil Wu, Eun Cho, Lisa A. Miosge, T. Daniel Andrews, Matt A. Field, Denis Tvorogov, Angel F. Lopez, Jeffrey J. Babon, Cristina Aparicio López, África Gónzalez-Murillo, Daniel Clemente Garulo, Virginia Pascual, Tess Levy, Eric J. Mallack, Daniel G. Calame, Timothy Lotze, James R. Lupski, Huihua Ding, Tomalika R. Ullah, Giles D. Walters, Mark E. Koina, Matthew C. Cook, Nan Shen, Carmen de Lucas Collantes, Ben Corry, Michael P. Gantier, Vicki Athanasopoulos, Carola G. Vinues

    Interference with glycosaminoglycan-chemokine interactions with a probe to alter leukocyte recruitment and inflammation in vivo

    Get PDF
    In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1ÎČ/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo

    A model describing photosynthesis in terms of gas diffusion and enzyme kinetics

    Full text link
    A model predicting net photosynthesis of individual plant leaves for a variety of environmental conditions has been developed. It is based on an electrical analogue describing gas diffusion from the free atmosphere to the sites of CO 2 fixation and a Michaelis-Menten equation describing CO 2 fixation. The model is presented in two versions, a simplified form without respiration and a more complex form including respiration. Both versions include terms for light and temperature dependence of CO 2 fixation and light control of stomatal resistance. The second version also includes terms for temperature, light, and oxygen dependence of respiration and O 2 dependence of CO 2 fixation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47495/1/425_2004_Article_BF00387066.pd

    A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation

    Get PDF
    Hyperinflammatory syndromes are life-threatening disorders caused by overzealous immune cell activation and cytokine release, often resulting from defects in negative feedback mechanisms. In the quintessential hyperinflammatory syndrome familial hemophagocytic lymphohistiocytosis (HLH), inborn errors of cytotoxicity result in effector cell accumulation, immune dysregulation and, if untreated, tissue damage and death. Here, we describe a human case with a homozygous nonsense R688* RC3H1 mutation suffering from hyperinflammation, presenting as relapsing HLH. RC3H1 encodes Roquin-1, a posttranscriptional repressor of immune-regulatory proteins such as ICOS, OX40 and TNF. Comparing the R688* variant with the murine M199R variant reveals a phenotypic resemblance, both in immune cell activation, hypercytokinemia and disease development. Mechanistically, R688* Roquin-1 fails to localize to P-bodies and interact with the CCR4-NOT deadenylation complex, impeding mRNA decay and dysregulating cytokine production. The results from this unique case suggest that impaired Roquin-1 function provokes hyperinflammation by a failure to quench immune activation
    • 

    corecore