
Nature  |  Vol 605  |  12 May 2022  |  349

Article

TLR7 gain-of-function genetic variation 
causes human lupus
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Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) 
signalling as a mechanism of human systemic autoimmune disease1–7, evidence of 
lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus 
erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral 
RNA8,9 and binds to guanosine10–12. We identified a de novo, previously undescribed 
missense TLR7Y264H variant in a child with severe lupus and additional variants in other 
patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine 
and 2',3'-cGMP10–12, and was sufficient to cause lupus when introduced into mice. We 
show that enhanced TLR7 signalling drives aberrant survival of B cell receptor 
(BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ 
age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper 
T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of 
MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B 
cell survival, and all cellular and serological phenotypes. Despite prominent 
spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not 
ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of 
pathogenic B cells. We establish the importance of TLR7 and guanosine-containing 
self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 
or MyD88 inhibition.

Although systemic lupus erythematosus (SLE) is generally a polygenic 
autoimmune disease, the discovery of monogenic lupus cases and 
rare pathogenic variants has provided important insights into disease 
mechanisms, including important roles of complement, type I interfer-
ons and B cell survival13–15. There is accumulating evidence that patients 
with SLE display phenotypes that are consistent with increased TLR7 
signalling associated with elevated IgD−CD27− double-negative B cells 
and, more specifically, the CXCR5−CD11c+ subset (also known as DN2 
B cells or age-associated B cells (ABCs)) in the peripheral blood1, and 
excessive accumulation of extrafollicular helper T cells16. Genome-wide 
association studies have identified common polymorphisms in or near 
TLR7 that segregate with SLE2–4. In mice, increased TLR7 signalling due 
to the duplication of the TLR7-encoding Yaa locus or to transgenic 
TLR7 expression exacerbates autoimmunity5,6 and deletion of TLR7 
prevents or ameliorates disease in other lupus models7. Despite this 
mounting link between TLR7 and the pathogenesis of lupus, no human 
SLE cases due to TLR7 variants have been reported to date. There is also 

conflicting evidence as to how TLR7 overexpression causes autoim-
munity, particularly, the relative roles of TLR7-driven spontaneous 
germinal centres (GCs) versus the role of TLR7-driven double-negative 
B cells; the latter have been proposed to originate extrafollicularly 
and be pathogenic in lupus1. Most mouse lupus models in which TLR7 
has a role in pathogenicity display increased formation of GCs and T 
follicular helper (TFH) cells5,6 and it has been proposed that TLR7 drives 
GCs enriched in self-reactive B cells17. However, recent reports have 
demonstrated that lupus can develop independently of GCs in mouse 
models in which disease is dependent on MyD88 signalling18,19.

TLR7 and TLR8 selectively detect a subset of RNA sequences20–22. 
On the basis of recent knowledge of how TLR8 senses RNA degra-
dation products to trigger downstream signalling23,24, it is thought 
that one ligand-recognition site in TLR7 binds to guanosine or 
2′,3′-cyclophosphate guanosine monophosphate (cGMP), derived from 
GTP degradation10, which synergizes with uridine-rich short RNAs bind-
ing to a second site11,12. Here we describe the action of a de novo TLR7 
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TLR7Y264H causes autoimmunity in mice
Our modelling suggested TLR7Y264H would increase affinity to endog-
enous ligands. To investigate whether TLR7Y264H could cause SLE, we 
introduced the orthologous allele into C57BL/6 mice using CRISPR–
Cas9 editing. WES analysis confirmed that Tlr7Y264H was the only relevant 
CRISPR-induced coding variant segregating with the phenotype. The 
resulting strain was named kika and Tlr7Y264H is hereafter named the kik 
allele. A CRISPR-generated line lacking TLR7 protein owing to a 1-bp dele-
tion was included as a control (Extended Data Fig. 2a, b). Male or female 
mice (aged 12 weeks) carrying one or two kik alleles displayed spleno-
megaly with increased cellularity (Fig. 1j), decreased survival (Fig. 1k) and 
ANAs with nuclear, cytoplasmic, cell-cycle-dependent and Golgi staining 
(Fig. 1l, Extended Data Fig. 3a). These were detected from 6 weeks of age 
in female kika mice (Extended Data Fig. 3d, e). Male Tlr7kik/Y and female 
Tlr7kik/+ kika mice also developed antibodies to the TLR7 ligands ssRNA 
and Smith protein (Sm) and ribonucleoprotein (RNP), an RNA-containing 
nuclear self antigen7 (Fig. 1m), and 10–20% had weak double-stranded 
DNA reactivity (Extended Data Fig. 3b, c). These results suggest TLR7Y264H 
is an X chromosome-linked dominant GOF allele.

H264 increases the response to guanosine
To validate the predicted increased affinity of H264 for guanosine, we 
tested the response of Tlr7kik/Y kika bone-marrow-derived macrophages 
(BMDMs) to increasing doses of guanosine and R848. Although no dif-
ference was observed with R848 (Fig. 1n and data not shown), we found 
an increased responsiveness to guanosine from kika BMDMs compared 
with wild-type BMDMs (Fig. 1o and Extended Data Fig. 3g). Both the 
first (guanosine-binding) and second (uridine-binding) sites of TLR7 
are necessary for ssRNA-induced TLR7 signalling8,10,12. We tested the 
responsiveness of wild-type ands mutant BMDMs to ssRNAs lacking 
uridine (ss41-L) or containing 6 to 10 uridines. Interestingly, whereas 
ssRNA sensing by wild-type BMDMs correlated with uridine content, 
ssRNA sensing by kika BMDMs was independent of uridine content, 
and ssRNA lacking uridine induced TLR7 activity in kika cells (Extended 
Data Fig. 3h). These results collectively indicate that the kika mutation 
selectively increases sensing of guanosine to the first site independently 
of activity at the uridine-selective second site, therefore raising the 
sensitivity to otherwise non-TLR7-stimulating ssRNAs.

Tissue damage caused by TLR7Y264H

In-depth phenotyping of kika mice revealed marked thrombocytopenia 
as seen in the proband (Fig. 2a) and a slightly lower white blood cell count 
(Extended Data Fig. 5a). Proliferative glomerulonephritis was evident in 
kidneys (Fig. 2b), as well as expanded mesangial matrix with electron-dense 
deposits and increased mesangial cellularity (Fig. 2c). Lymphoid infiltrates 
were seen in the liver, salivary glands and pancreas (Fig. 2d) where they 
occasionally formed peri-islet follicular structures. Exocrine pancreatic 
tissue was often replaced by fat, particularly in Tlr7kik/kik mice (Fig. 2d). Other 
findings included subpleural, perivascular and interstitial infiltrates in 
the lungs; myocyte degeneration and necrosis in skin panniculus muscle; 
focal myocardial fibrosis, splenic lymphomas (4 out of 6 mice); chronic 
lymphadenitis in the lymph nodes and gut; and hyperplasia of Peyer’s 
patches (Supplementary Table 4, Extended Data Fig. 4). Serum levels of 
IFNγ, IL-6, IL-10 and TNF were increased (Fig. 2e, Extended Data Fig. 3f).

Flow cytometry analysis of kika spleens revealed a reduced T:B cell 
ratio with an increase in total B cells, spontaneous GCs, and increased 
plasma cells and ABCs; ABCs were also expanded in the blood and kid-
neys (Fig. 2f–i, Extended Data Fig. 5b, c). The percentages of splenic 
marginal zone B cells were decreased, but the total numbers were not 
decreased (Extended Data Fig. 5d). Effector or memory CD4+CD44high 
cells, including TFH cells and CXCR3+ extrafollicular helper CD4+ 
T cells, were increased in kika mice (Fig. 2j–l) as well as circulating 

single-residue gain-of-function (GOF) variant that increases the affinity 
of TLR7 for guanosine and cGMP, causing enhanced TLR7 activation 
and childhood-onset SLE.

TLR7 variants in patients with SLE
We undertook whole-genome sequencing of a Spanish girl who was 
diagnosed with SLE at the age of 7 (Supplementary Table 1). She first 
presented with refractory autoimmune thrombocytopenia and had 
elevated anti-nuclear antibodies (ANAs) and hypocomplementaemia. 
She went on to develop inflammatory arthralgias, constitutional symp-
toms, intermittent episodes of hemichorea, and had mild mitral insuffi-
ciency and renal involvement after admission with a hypertensive crisis. 
Bioinformatics analysis revealed a de novo, TLR7 p.Tyr264His (Y264H) 
missense variant that was predicted to be damaging by SIFT and CADD 
(Fig. 1a–c (family A) and Supplementary Table 2). This variant was not 
present in the databases of normal human genome variation (gnomAD, 
ExAC, dbSNP). Examination of the BAM files together with paternity 
analysis confirmed that the mutation occurred de novo (Extended Data 
Fig. 1a, b, d). The mutated tyrosine residue lies in the eighth leucine-rich 
repeat of TLR725, within the endosomal part of the receptor (Fig. 1b) and 
is highly conserved across species, including zebrafish (Fig. 1d). Addi-
tional analyses for rare variants in 22 genes that can cause human SLE 
when mutated (Supplementary Table 3) revealed a heterozygous variant 
in RNASEH2B, p.Ala177Thr, which, when homozygous, causes SLE26.

Whole-exome sequencing (WES) analysis of additional patients with SLE 
identified two other variants in TLR7 (B.I.2 F507L and C.I.1 R28G; Fig. 1a–d, 
Extended Data Fig. 1c, Supplementary Tables 1, 2). Notably, in family B 
the mother had SLE from her mid-twenties and the daughter was diag-
nosed with neuromyelitis optica in the presence of ANAs and antibodies 
to aquaporin-4  (AQP4-Ab, also known as NMO-IgG) in the serum and cer-
ebrospinal fluid. Both carried the TLR7F507L variant, which was also highly 
conserved (Fig. 1d). No additional rare variants in the 22 SLE-causing genes 
were identified in these families (Supplementary Table 3).

TLR7Y264H increases guanosine sensing
To test whether pathogenic variants enhance TLR7 signalling and down-
stream NF-κB activation, we transfected RAW264.7 cells with plasmids 
encoding the different TLR7 mutants. Compared with wild-type cells, 
overexpression of TLR7Y264H and TLR7F507L constructs showed enhanced 
NF-κB activation for the mutant variants after 2′,3′-cGMP stimulation, 
whereas overexpression of TLR7R28G showed enhanced NF-κB activa-
tion after stimulation with guanosine and single-stranded RNA (ssRNA) 
(Fig. 1e, f). Using a published TLR7 structure, we mapped the mutated 
Tyr264 residue to TLR7 ligand-binding site 1, where R837/R848 and 
guanosine or its analogues (such as 2′,3′-cGMP) bind10. The Tyr264 
side-chain OH has been shown to form a hydrogen bond with 2′,3′-cGMP10. 
To further understand whether the Y264H mutation could enhance TLR7 
sensing or activation, we used the method of thermodynamic integration 
within molecular dynamics simulations27–29 to determine the relative 
binding affinity of the ligands to dimeric TLR7 (Extended Data Fig. 1e, f).  
Guanosine, but not R848, appeared to have increased affinity to its 
binding site with both singly (H264) and doubly protonated (H+264) pro-
tonated variants (Fig. 1g). The site of the mutation, Tyr264, was close 
(albeit not bound) to the guanosine, which formed a hydrogen bond 
to Thr586, limiting the access of water to this end of the ligand (Fig. 1h). 
By contrast, the mutants H264 and H+264, appeared to allow solvent to 
access this region, helping to stabilize a cluster of water molecules that 
provide a favourable environment for the polar ribose ring of guanosine 
(Fig. 1i). In these simulations, Y264H+ also displayed stronger attrac-
tive electrostatic interactions with guanosine, providing a plausible 
explanation for the much larger predicted affinity to this variant. The 
electrostatic attraction of H+264 is predicted to be even greater for the 
natural ligand 2′,3′-cGMP that carries a negative charge.



Nature  |  Vol 605  |  12 May 2022  |  351

CXCR5highPD-1high GC TFH cells that are usually only seen in secondary 
lymphoid tissues (Extended Data Fig. 5e). Plasmacytoid dendritic cells 
(pDCs) appeared to be activated with increased MHC-II and reduced 
siglec-H expression30 (Extended Data Fig. 5f). TLR7-deficient mice 
lacked spontaneous GC B cells, TFH cells and ABCs, and had reduced 
plasma cells (Extended Data Fig. 5g), supporting that the expansion 
of these subsets in kika mice is driven by the TLR7 GOF.

B-cell-intrinsic effects of TLR7Y264H

To establish which phenotypes were cell autonomous, mixed bone 
marrow chimeras were generated by adoptively transferring 100% 
wild-type CD45.2 or kika CD45.2 bone marrow, or 50:50 mixes of 

either wild-type CD45.1:kika CD45.2 or wild-type CD45.1:wild-type 
CD45.2 bone marrow into sublethally irradiated Rag1−/− mice (Fig. 3a, b, 
Extended Data Fig. 5h). Autoantibodies were present in chimeric mice 
receiving either 100% or 50% kika bone marrow cells (Fig. 3a, Extended 
Data Fig. 5j). Expansion of GCs, ABCs and plasma cells (Fig. 3b) was 
cell-intrinsic whereas all T cell phenotypes and reduction in marginal 
zone B cells were largely cell-extrinsic (Fig. 3b, Extended Data Fig. 5h, i).  
The ABCs of kika mice expressed more TLR7 although not to the 
extent seen in Yaa mice that express two copies of Tlr7 (Fig. 3c).  
By contrast, the functional consequences of the Y264H mutation were 
more severe than the Yaa allele, as seen by higher levels of anti-RNA 
and smRNP autoantibodies and ABCs in kika mice (Fig. 3d, Extended 
Data Fig. 5k).
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Fig. 1 | TLR7 variants in patients and mice with systemic autoimmunity and 
ligand-binding modelling. a, b, TLR7 variants in families (a) and within protein 
domains25 (b). c, Sanger sequencing results. d, Conservation. e, f, NF-κB activity 
(ratio of NF-κB firefly to Renilla luciferase relative light units (RLU)) after 
human TLR7 plasmid transfection into RAW264.7 cells treated with 2′,3′-cGMP 
(e) or guanosine plus ssRNA (f). Data are mean and s.d. n = 12 biological 
replicates or transfections shown as individual dots. Statistical significance 
was calculated using one-way analysis of variance (ANOVA) with Bonferroni 
correction for multiple comparisons, compared with wild-type TLR7. g, Binding 
free energy (ΔG; top) of guanosine and R848 relative to wild-type (WT) TLR7 for 
the Y264H and Y264H+ mutants, and the number (bottom) of bound 
water molecules within 3.5 Å of ligand tail hydrogen and oxygen atoms. Data 
are mean and s.e.m. h, i, Molecular dynamics simulations showing the binding 
pose of guanosine to wild-type (h) and Y264H (i) TLR7. Guanosine is shown in 
thick liquorice with yellow carbon atoms and mesh surface. TLR7 is shown as a 

ribbon representation with the guanosine-interacting residues shown as 
sticks. Individual protomers are coloured green and blue. The dashed lines 
indicate hydrogen bonds. Asterisks indicate residues belonging to the other 
protomer. Water molecules within 5 Å of both guanosine and residue 264 are 
shown. j, Spleens from Tlr7+/+ and Tlr7 kik/kik female mice (top). Bottom, median 
spleen mass and cellularity. k, The survival of kika mice. n = 12 (Tlr7 +/+), n = 25 
(Tlr7 +/kik), n = 11 (Tlr7 kik/kik), n = 11 (Tlr7 +/Y), n = 7 (Tlr7 kik/Y). l, Hep-2 
immunofluorescence showing ANAs in 12-week-old kika mice. Representative 
of n > 10 mice. Scale bars, 100 µm. m, Serum antibodies to ssDNA (ANA), ssRNA 
and smRNP from kika mice (aged 12 weeks). OD405, optical density at 
405 nm. Bars indicate median values. n, o, TNF production from mouse BMDMs 
treated with R848 (n) or guanosine (o). Data are mean ± s.e.m. The results 
represent n = 4 ( j), n = 3 (e, k, m–o) or n = 2 (f) experiments. Statistical analysis 
was performed using Tukey multiple-comparison tests ( j, m); and two-way 
ANOVA with Sidak (o). Exact P values are shown.
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We investigated whether the Y264H variant leads to spontaneous 
TLR7 cleavage and activation in the absence of stimulation12. Western 
blot analysis of splenocyte lysates from kika and wild-type littermates 
using two different antibodies against both the C and N termini revealed 
the presence of the approximately 75-kDa C-terminal-cleaved and 
65-kDa N-terminal cleaved TLR7 product in splenocytes from unim-
munized kika mice (Fig. 3e). Such cleaved fragments have been reported 
to be indicative of the active form of TLR731. MyD88 was also increased 
in kika splenocytes (Fig. 3f), consistent with enhanced TLR signalling32.

Proband A.II.1 was also heterozygous for RNASEH2B p.Ala177Thr, which, 
when homozygous, causes SLE and Aicardi–Goutières syndrome26.  
RNASHE2B activates cGAS–STING, which increases type 1 IFN pro-
duction and TLR7 signalling33. To test whether this allele might act 
in functional epistasis with TLR7Y264H, we generated mice carrying an 
Rnaseh2b 1 bp deletion, leading to a premature stop codon at amino 
acid 175 (Extended Data Fig. 6a). Heterozygous mice were viable and 

had no immunological phenotypes (Extended Data Fig. 6b), whereas the 
mutation was embryonically lethal in homozygous mice, as previously 
reported for Rnaseh2b-knockout mice34 (Extended Data Fig. 6e–h). 
Besides a mild enhancement in the expression of type I IFN signature 
genes (Extended Data Fig. 6i), Rnaseh2b hemizygosity did not exac-
erbate the cellular or serological phenotypes of Tlr7kik/+ female mice 
(Extended Data Fig. 6c, d). However, it is possible that there may be 
functional epistatic effects of these two RNA-interacting proteins in 
the presence of environmental triggers.

Enhanced survival of BCR-activated cells
We next examined the stage at which TLR7Y264H breaks B cell tolerance. 
We hypothesized that constitutive TLR7 signalling may provide an 
aberrant signal 2 to self-reactive B cells that have bound to self-antigen 
through their BCR (signal 1) and would otherwise die within 72 h, as 
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measurement of cytokines in serum from wild-type (n = 8) or kika (n = 12) mice. 
f–l, Flow cytometry plots and quantification of splenic cells from kika mice 
(aged 12 weeks): GC B cells (CD19+CD95+BCL6+) (f); ABCs (B220+CD21−CXCR5−C

D19highCD11c+) (g); plasma cells (PCs; CD138+CD98+) (h); ABCs in the kidneys 
from kika mice (i); CD4 effector T cells (CD4+FOXP3−CD44+) ( j); TFH cells 
(CXCR5+PD1high) (k); and extrafollicular helper T cells (eTH; CD4+CXCR5−PD1+ 
CXCR3+) (l). The bars represent the median values, and each dot represents a 
single mouse. These results are representative of n = 4 (f–h, j–l), n = 3 (b, d), or 
n = 2 (a, i) experiments. Experiments in c were performed once with 5 mice 
(WT n = 2, kika n = 3) and experiments in e were performed once with serum 
from 20 mice. Statistical analysis was performed using one-way ANOVA with 
Tukey multiple-comparison test (a, f–h, j–l); unpaired t-tests (i); and  
Mann–Whitney U-tests (e). The exact P values are shown.
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occurs in anergic B cells35 and in immature CD93+ B cells stimulated 
with anti-IgM36. We could not use CD93 to purify immature splenic B 
cells because we found that agonistic TLR7 treatment of mature B cells 
upregulated CD93 (Extended Data Fig. 7a). We therefore activated either 
total splenic B cells or CD93+B220low immature bone marrow cells from 
kika, wild-type and Yaa mice carrying a Tlr7 duplication6,7, stimulated 
them with R837 or anti-IgM and performed live cell counts 72 h later. 
We observed that anti-IgM, but not R837, enhanced the survival of total, 
mature and immature kika B cells compared with control cells (Fig. 3g, 
Extended Data Fig. 7b–d). This differs from reports using TLR7 transgenic 
B cells, which displayed increased survival only when activated with a 
TLR ligand and not with anti-IgM37, again suggesting sustained activation 
of TLR7(Y264H) by endogenous ligands. RNA-sequencing (RNA-seq) 

analysis of kika and control splenocytes cultured for 20 h with anti-IgM 
revealed that 203 and 34 transcripts were upregulated or downregu-
lated, respectively, by more than twofold (P < 0.05) in kika cells (Fig. 3i). 
Upregulated transcripts included the anti-apoptotic genes Mxd338 and 
Serpina3g39, as well as IL28ra (also known as Ifnlr1), which encodes the 
common IFNλ-1/2/3 receptor40. Levels of the transcription factor SOX5, 
which decreases B cell proliferative capacity while allowing plasmablast 
differentiation, were also41. Other upregulated transcripts included 
Cxcr3, which promotes lupus nephritis42. We confirmed a decreased 
tendency for apoptosis in kika ABCs with decreased expression of active 
caspase-3 and also a small decrease in proliferation (Fig. 3h). Overall, 
these results suggest that hypersensitive TLR7 signalling enables the 
survival of B cells that bind to self-antigen through their surface BCR.
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MyD88 dependence and GC independence
To confirm that the observed aberrant B cell survival after IgM stim-
ulation was due to enhanced TLR7 signalling, we crossed kika mice 

with Myd88-knockout mice. MyD88 deficiency completely rescued 
kika phenotypes, including splenomegaly (Fig. 4a), accumulation of 
ABCs, GC B cells, plasma cells, eTH cells (Fig. 4b, Extended Data Fig. 8) 
and autoantibody formation (Fig. 4c). The aberrant survival of B cells 
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are shown.
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receiving only signal 1 was completely abrogated in anti-IgM-activated 
kika B cells lacking MyD88 (Fig. 4d) without changes in proliferation 
(Fig. 4e).

It remains controversial whether the spontaneous GCs of lupus-prone 
mice contribute to the autoimmune phenotype, with some suggesting 
that TLR7 promotes the appearance of self-reactive GC B cells that 
produce autoantibodies17 and others proposing that the pathogenic 
B cells are ABCs of extrafollicular origin1. To resolve this question, we 
crossed kika mice with Bcl6flox/flox;Cd23cre mice that cannot form GCs. In 
the F2-intercross offspring, we enumerated GC B cells and confirmed 
that kika Bcl6flox/flox;Cd23cre mice had a substantial reduction in GC B cells 
(Fig. 4f). Despite the paucity of GC B cells, kika Bcl6flox/flox;Cd23cre mice 
developed autoantibodies and an even more pronounced expansion 
of ABCs and plasma cells than that observed in their GC-forming kika 
littermates (Fig. 4g, h). These results support the idea that TLR7-driven 
autoimmunity is GC independent.

We finally analysed the PBMCs from proband A.II.1 carrying the 
Y264H variant to confirm the phenotypes observed in the kika 
mice. Flow cytometry analysis revealed that ABCs and the paren-
tal IgD−CD27− B cells were substantially increased compared with 
gender- and age-matched controls (Fig. 4j, k). As seen in kika mice, 
TLR7 and MyD88 protein expression were increased in the pDCs and 
B cells of the proband (Fig. 4l, m), as was the cleaved TLR7 product 
(Fig. 4i). Increased levels of ABCs, TLR7 and MyD88 were not seen 
in the most unrelated patients with SLE (Extended Data Fig. 9a, b). 
PBMCs in proband A.II.1 also revealed upregulation of the NF-κB acti-
vation marker CD25 in unstimulated monocytes (Fig. 4n), increas-
ing its expression after TLR7 stimulation (Extended Data Fig. 9c).  
The proband with the TLR7Y264H allele, but not the mother (A.1.2),  
carrying the RNASEH2BA177T variant allele (Fig. 4o), had an increased 
type I IFN signature.

We conclude that TLR7 GOF can cause B-cell-driven autoimmun-
ity including SLE due to increased affinity to guanosine, leading to a 
lowered threshold for TLR7 activation. Although the human TLR7Y264H 
variant is sufficient to induce lupus in mice with no clear additive effects 
of Rnaseh2b hemizygosity apart from increased type I IFN gene tran-
scripts, an exacerbating role of this variant in humans may occur in 
the presence of environmental stimuli, including ssRNA viruses such 
as SARS-CoV-2 that are dependent on TLR7 immunity43. The TLR7 GOF 
promotes the survival of BCR-activated immature B cells, which are 
known to be enriched in self-reactivity44. Activation of self-reactive B 
cells by self-antigen in the presence of a constitutive signal 2 is likely 
to promote differentiation and autoantibody production of B cells 
that would otherwise be destined to die in the absence of T cell help.

Notably, despite enhanced TLR7 signalling causing the cell- 
autonomous accumulation of ABCs and GC B cells, GC B cells are 
dispensable for the autoimmune phenotype and rather protect 
against it. Extrafollicular ABCs are therefore the most likely source 
of pathogenicity. It will be important to determine whether this is 
true for all cases of SLE, or only for patients in whom excessive TLR7 
signalling is the dominant pathogenic pathway. Although highly 
damaging TLR7 GOF mutations are rare, our data, together with 
evidence of increased TLR7 signalling in a large fraction of patients 
with SLE1, suggest that TLR7 is a key upstream driver of human SLE. 
Therapies blocking TLR7 itself or MyD88 may be more effective 
than therapies blocking GCs in patients with SLE due to increased 
TLR7 signalling.
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Methods

Mice
Mice were bred and maintained in specific-pathogen-free conditions at 
the Australian National University (ANU), Canberra, Australia. Experi-
mentation was performed according to the regulations approved by the 
local institution ethics committee, including the Australian National 
University’s Animal and human Experimentation Ethics Committee. 
Estimations of the expected change between experimental and control 
groups allowed the use of power analysis to estimate the group size 
that would enable detection of statistically significant differences. 
For in vitro experiments, randomization was not required given that 
there were no relevant covariates. Blinding was used for microscopy:  
histological analysis, electron microscopy imaging. Mice were used 
from 6–12 weeks, except for survival curves and tissue assessment  
(12–26 weeks). Both male and female mice were used and their genders 
are indicated in most figures (the Y chromosome is indicated in the 
genotype, that is, male mice).

Generation of the Tlr7- and Rnaseh2b-mutant mouse strains
Tlr7Y264H and deficient mice as well as Rnaseh2b-deficient knockout 
mice were generated in a C57BL/6NCrL background using CRISPR–
Cas9-mediated gene editing technology45. Genomic sequences were 
obtained from Ensembl (https://ensembl.org/) and compared to ascer-
tain the conservation of the sequences between mouse and human 
genes. Single guide RNA (sgRNA) and single-stranded oligonucleo-
tides were purchased from Integrated DNA Technology with the fol-
lowing sequences: Tlr7Y264H sgRNA, 5′-TATGGGACATTATAACATCG-3′ 
with a 5′-AGG-3′ PAM; Rnaseh2b 5′-CTTTTAGTGCCACCACAGTT-3′ 
with a 5′-TGG-3′ PAM; Tlr7Y264H single-stranded oligonucleotide: 
5′- GTCAATGAATTGAAAGCATTGTCATGGATCTGTAAGGGGGAATT 
ATTTTCACACGGTGTACACGGATATGGGACATTATGACATCGAGGGCA 
ATTTCCACTTAGGTCAAGAACTTGCAACTCATTGAGGTTATTAAAATCAT 
TTTCTTGGATTTTCTTAAT-3′. The italicized nucleotides in the sgRNA 
sequences indicate the base altered by the respective variant in Tlr7 
or Rnaseh2b.

C57BL/6Ncrl female mice (aged 3–4 weeks) were mated with 
C57BL/6Ncrl males. Pseudopregnant CFW/crl mice were superovu-
lated and mated with stud males. After detection of a vaginal plug, the 
fertilized zygotes were collected from the oviduct and Cas9 protein 
(50 ng µl−1) was co-injected with a mixture of sgRNA (2.5 ng µl−1) and 
single-stranded oligonucleotides (50 ng µl−1) into the pronucleus of 
the fertilized zygotes. After the micro-injection of the eggs, the zygotes 
were incubated overnight at 37 °C under 5% CO2 and two-cell stage 
embryos were surgically transferred into the uterine horn of the pseudo-
pregnant CFW/Crl mice. The primers designed to amplify these regions 
are as follows: Tlr7-Y264H-F, 5′-TGAAACACTCTACCTGGGTCA-3′; Tlr7- 
Y264H-R, 5′-GCCTCCTCAATTTCTCTGGC-3′; Rnaseh2b-F, 5′-GCAAGAC 
CATCCCTACTCCA-3′;and Rnaseh2b-R,5′-AACACCTGCCCACAT 
CTGTA-3′.

Human WES and variant identification
Written informed consent was obtained as part of the Centre for Per-
sonalised Immunology Program. The study was approved by and com-
plies with all relevant ethical regulations of the Australian National 
University and ACT Health Human Ethics Committees, the University 
Hospitals Institutional Review Board, or by the Renji Hospital Ethics 
Committee of Shanghai Jiaotong University School of Medicine. For 
WES analysis, DNA samples were enriched using the Human SureSe-
lect XT2 All Exon V4 Kit and sequenced using the Illumina HiSeq 2000 
(Illumina) system. Bioinformatics analysis was performed at JCSMR, 
ANU as previously described45. A search for ‘de novo’, coding, novel 
or ultrarare (MAF < 0.0005) variants among 100 SLE trios identified 
a proband with a de novo, novel variant in TLR7 (Y64H) (family A). 
A further search for rare variants (MAF < 0.005) in TLR7 across our 

three systemic autoimmune cohorts (Australia, Europe and China) 
that have undergone WES at our Centre for Personalised Immunol-
ogy (~500 probands) identified 2 additional probands (families B–C).  
A further proband was identified at Baylor-Hopkins Center for Men-
delian Genomics, where the family was recruited as a part of a study 
investigating monogenic causes of neuroimmune disorders in families 
with early disease onset (≤10 years). All family members provided writ-
ten informed consent under Baylor College of Medicine Institutional 
Review Board (IRB) protocol H-29697. A detailed description of the 
exome sequencing approach, data processing, filtration and analysis 
for that particular family can be found in the supplementary informa-
tion of ref. 46. All probands were subsequently analysed for rare variants 
in 22 genes proven to cause human SLE (Supplementary Table 1).

Human PBMC preparation
PBMCs were isolated using Ficoll-Paque (GE Healthcare Life Sciences) 
gradient centrifugation and frozen in fetal bovine serum (FBS, Gibco) 
with 10% DMSO (Sigma-Aldrich).

Flow cytometry
Single-cell suspensions were prepared from mouse spleens or thawed 
PBMCs, and individual subsets were analysed using flow cytometry. The 
primary antibodies used for mouse tissues included: SiglecH-APC (551, 
BioLegend), IgD-FITC (405718, BioLegend), IgD-PerCP Cy5.5 (11-26c.2a, 
BD Pharmingen), CD3-A700 (17A2, BioLegend), CD19-BUV395 (1D3, 
BD Horizon), CD138-PE (281-2, BD Pharmingen), PD1-BV421 (29F.1A12, 
BioLegend), CCR7-PerCP Cy5.5 (4B12, BioLegend), CD8-BUV805 (53-6.7, 
BD Horizon), CD19-BV510 (6D5, BioLegend), CD4-BUV395 (6K1.5, BD 
Horizon) CD21/35-BV605 (7G6, BD Horizon), CD45.1-BV605 (A20, Bio-
Legend), CD45.1-BV711 (A20, BioLegend), CD45.1-PB (A20, BioLegend), 
TLR7-PE (A94B10, BD Pharmingen), CD23-BV421 (B3B4, BioLegend), 
CXCR3-PE (CXCR3-173, BioLegend), CD19-A700 (eBio1D3, Invitrogen), 
FOXP3-FITC (FJK-16s, Invitrogen (eBioscience), FOXP3-PECy7 (FJK-16s, 
Invitrogen eBioscience), IgM-FITC (II/41, BD Pharmingen), IgM-PECy7 
(II/41, Invitrogen), CD44-FITC (IM7, BD Pharmingen), CD44-PB (IM7, 
BioLegend), CD95 (FAS)-BV510 ( Jo2, BD Horizon), BCL6-A467 (K112-91, 
BD Pharmingen), CD11b-PerCP Cy5.5 (M1/70, BioLegend), IA/IE-BV421 
(M5/114.15.2, BioLegend), CD11c-A647 (N418, BioLegend), CD11c-BV510 
(N418, BioLegend), CD11c-FITC (N418, BioLegend), CD25-PE (PC62, Bio-
Legend), B220-A647 (RA3-6B2, BD Pharmingen), B220-BUV395 (RA3-
6B2, BD Horizon), B220-BUV737 (RA3-6B2, BD Horizon), CD98-PECy7 
(RI.388, BioLegend), CD4-PECy7 (RM4-5, BD Pharmingen), CD25-A647 
(PC61, BioLegend), CD4-A647 (RM4-5, BioLegend), CD11c-APC (HL3, BD 
Pharmingen), CD138-Biotin (281-2, BD Bioscience), CXCR5-Biotin (2G8, 
BD Bioscience), streptavidin-BUV805 (BD Horizon), streptavidin-BV510 
(BioLegend), CD19-BV605 (6D5, BioLegend), B220-PE (RA3-6B2, 
BioLegend), BST2-PE (927, BioLegend), CD19-PE (6D5, BioLegend), 
IgD-PE (11-26c.2a, BioLegend), CD11b-PECy7 (M1/70, eBiosciences), 
streptavidin-PECy (eBiosciences), CD4-PerCPCy5.5 (RM4-5, BioLeg-
end), CD45.2-PerCPCy5.5 (104, BD Bioscience), CD3-Pacific Blue (HIT2, 
BD Pharmingen). For human PBMCs: CD19-BV650 (HIB19, BioLegend), 
HLA-DR-BV510 (L243, BioLegend), CD24-BV605 (ML5, BioLegend), 
CD56-PECy7 (NCAM16.2, BD Pharmingen), CD14-PerCP (MΦP9, BD 
Pharmingen), IgD-BV510 (IA6-2, BioLegend), CD123-PE (7G3, BD 
Pharmingen), CD21-APC (B-ly4, BD Pharmingen), CD11c-APC (B-ly6, 
BD Pharmingen), CD16-APC-H7 (3G8, BD Pharmingen), IgG-PECy7 (G18-
145, BD Pharmingen), CD10-PE-CF594 (HI10a, BD Pharmingen), IgA-PE 
(IS11-8E10, Miltenyi Biotech), CD27-APC-EF-780 (O323, eBiosciences), 
IgM-EF450 (SA-DA4, eBiosciences), CD38-PerCP-Cy5.5 (A60792, Beck-
man Coulter), CD93-PECy7 (AA4.1, BioLegend), MyD88 (OTI2B2, Ther-
moFisher Scientific), TLR7-PE (4G6, Novus Biologicals). Unconjugated 
antibodies were labeled using the Zip Alexa Fluor 647 Rapid Antibody 
Labeling Kit (Z11235) as per the manufacturer's instructions (Ther-
moFisher Scientific). Zombie aqua dye (BioLegend) or live dead fixable 
green (Thermo Fisher Scientific) was used for detecting dead cells. Cell 
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Fc receptors were blocked using purified rat anti-mouse CD16/CD32 
(Mouse BD Fc Block, BD Biosciences) and then stained for 30 min at 
4 °C, in the dark, with primary and secondary antibodies. Intracellular 
staining was performed using the FOXP3 Transcription Factor Staining 
Buffer Set (eBioscience) according to the manufacturer’s instructions. 
Samples were acquired on the Fortessa or Fortessa X-20 cytometer with 
FACSDiva (BD, Biosciences) and analysed using FlowJo v.10 (FlowJo). 
All fluorescence-activated cell sorting (FACS) and microscopy analysis 
was carried out at the Microscopy and Cytometry Facility, Australian 
National University.

Sanger sequencing
Primers for human TLR7 DNA sequencing were used at 10 µM (primer 
sequences available on request). PCR amplification was carried out 
using Phusion Hot Start II DNA Polymerase II (Thermo Fisher Scien-
tific) and under the conditions recommended by the manufacturer. 
PCR amplicons were electrophoresed and excised bands were purified 
using the QIAquick Gel Extraction Kit (Qiagen). Sanger sequencing 
was completed using Big Dye Terminator Cycle sequencing kit v3.1 
(Applied Biosystems) using the same primers used for PCR amplifica-
tion. Sequencing reactions were run on the 3730 DNA Analyze (Applied 
Biosystems) system at the ACRF Biomolecular Resource Facility, Aus-
tralian National University.

Immunohistochemistry
Liver, pancreas and kidneys were fixed in 10% neutral buffer formalin 
solution, embedded in paraffin and stained with H&E.

Bone marrow chimera experimentation
For competitive bone marrow chimeras, Rag1−/− mice were irradiated 
and injected intravenously with equal numbers of bone marrow cells 
from either wild-type or kika CD45.2 and wild-type CD45.1 mice. Mice 
were given Bactrim in their drinking water for 48 h before injection 
and for 6 weeks after injection, and housed in sterile cages. After 22 
weeks of reconstitution, mice were taken down for phenotyping by 
flow cytometry.

B cell culture and Cell Trace Violet staining
Single-cell suspensions were prepared from kika, wild-type or 
Tlr7-knockout mouse spleens. B cells were magnetically purified using 
the mouse B Cell Isolation Kit (Miltenyi Biotec), labelled with Cell Trace 
Violet (CTV, Thermo Fisher Scientific) and cultured for 72 h in com-
plete RPMI 1640 medium (Sigma-Aldrich) supplemented with 2 mM 
l-glutamine (Gibco), 100 U penicillin–streptomycin (Gibco), 0.1 mM 
non-essential amino acids (Gibco), 100 mM HEPES (Gibco), 55 mM 
β-mercaptoethanol (Gibco) and 10% FBS (Gibco) at 37 °C in 5% CO2. 
For BCR stimulation, cells were cultured in 10 µg ml−1 AffiniPure F(ab′)2 
fragment goat anti-mouse IgM, µ-chain specific ( Jackson Immuno 
Research) or 1 µg ml−1 each R837 (Invitrogen). CD93 expression was 
examined by sorting splenic B cells with CD19-PE (6D5, BioLegend), 
CD3-APCCy7 (17A2, BioLegend), CD93-APC (AA4.1, Invitrogen) and the 
viability stain 7-aminoactinomycin D (Molecular Probes, Invitrogen). 
Cells were cultured with complete RPMI for 72 h and stimulated with 
anti-mouse IgM or R837. Bone marrow was obtained from mice. The Fc 
receptors were blocked (purified rat anti-mouse CD16/CD32 (Mouse 
BD Fc Block BD Biosciences) and the cells were stained and sorted with 
B220-PE (RA3-6B2, BioLegend), CD93-APC (AA4.1, Invitrogen) and the 
viability stain 7-aminoactinomycin D (Molecular Probes, Invitrogen). 
Cells were sorted on a FACS Aria II system and cultured in complete 
RPMI medium.

BMDM cell culture and stimulation
Primary BMDMs from 3 Tlr7kik/Y mice and wild-type littermates were 
extracted and differentiated for 7 days in complete DMEM supple-
mented with L929-conditioned medium as previously reported47, 

before overnight stimulation with ssRNA, guanosine or R848. Notice-
ably, the yield of Tlr7kik/Y BMDMs obtained after 7 day differentiation was 
substantially greater than from wild-type mice. All synthetic RNAs were 
synthesized by Integrated DNA Technologies. ssRNAs (below) with no 
backbone modification were resuspended in duplex buffer (100 mM 
potassium acetate, 30 mM HEPES, pH 7.5, DNase–RNase-free H2O), and 
were previously shown to induce TLR7 sensing in human cells48. ssRNAs 
were transfected with DOTAP (Roche) and pure DMEM in biological trip-
licate, as previously described48, to a final concentration of 500 nM. The 
ratio of DOTAP to RNA (at 80 μM) was 3.52 µg μl−1 of ssRNA. Guanosine 
(Sigma-Aldrich, G6264, 10 mg freshly resuspended in 176.5 μl DMSO 
(200 mM stock solution)) and R848 (Invivogen, tlrl-r848) were used at 
the indicated final concentrations. TNF levels in culture supernatants 
were detected using the BD OptEIA Mouse ELISA kit (BD Biosciences) 
according to the manufacturers’ protocols. Tetramethylbenzidine 
substrate (Thermo Fisher Scientific) was used for quantification of 
the cytokines on a Fluostar OPTIMA (BMG LABTECH) plate-reader. 
The RNA sequences used (5′-3′) were as follows: B-406AS-1, UAAUU 
GGCGUCUGGCCUUCUU; 41-L, GCCGGACAGAAGAGAGACGC; 41-6, 
GCCGGACAUUAUUUAUACGC; 41-8, GCCGGUCUUUAUUUAUACGC; 
41-10, GCCGGUCUUUUUUUUUACGC.

ADVIA blood analysis
Orbital bleeds were performed on mice and blood samples were run 
on the ADVIA system (Siemens Advia 1200).

Western blotting
Cytosolic extracts were prepared from around 20 million–40 mil-
lion splenocytes by lysis in Triton X-100 buffer (0.5% Triton X-100, 
20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 10% glycerol) and 
centrifuged. Cytosolic extracts were resolved on 8% SDS–polyacryla-
mide gels and probed with the relevant primary and secondary anti-
bodies. Rabbit anti-TLR7 (D7; Cell Signaling Technology) and mouse 
anti-mouse TLR7-PE (A94B10; BD Biosciences) were used at 1:1,000, 
the actin monoclonal antibody ( JLA20, Developmental Studies Hybri-
doma Bank, The University of Iowa) was used at 1:5,000. Membranes 
were developed with Clarity Western ECL Substrate (BioRad Labo-
ratories).

Dual-luciferase assays
RAW264.7 cells were transfected with 245 ng of pNIFTY (NF-κB lucif-
erase; InvivoGen), pRL-CMV (100 ng, Promega) Renilla luciferase con-
trol plasmid, 125 ng of TLR7-HA plasmids (Genecopoeia) expressing the 
individual variants. After overnight expression, half of the samples were 
stimulated with 1 mM 2′,3′-cGMP (Santa Cruz) or 1 mM guanosine plus 
20 µg ml−1 ssRNA using DOTAP for 6 h and dual-luciferase assays were 
performed as previously described45. Raw264.7 cells (originally from 
ATCC) were tested for mycoplasma contamination using PlasmoTest 
(InvivoGen).

Statistics
Statistical analysis was carried out using R software v.3.6.1 (The R Foun-
dation for Statistical Computing) and the Emmeans package. Mouse 
spleen mass data were analysed using two experiments as a blocking 
factor and one-way ANOVA, followed by a pairwise estimated marginal 
means comparison of genotypes. Mouse cellular phenotyping, ELISAs, 
white blood cell and platelet count analyses were performed using a log 
linear regression model and one-way ANOVA, followed by a pairwise 
estimated marginal means comparison of genotypes. Purified B cell 
cultures were analysed using a linear regression model and one-way 
ANOVA, followed by a pairwise estimated marginal means comparison 
of genotypes and stimulatory effect. Luciferase assay statistics were 
analysed using one-way ANOVA with Bonferroni multiple-comparison 
test (Prism, GraphPad). All data were filed using Microsoft Excel 2016 
and graphed using PRISM.



DNA, RNA and nRNP ELISAs
Plates were coated with poly-l-lysine (Sigma-Aldrich) before addi-
tion of 2.5 µg of either DNA (D7290, Sigma-Aldrich), RNA (AM7120G, 
Thermo Fisher Scientific) or nRNP (SRC-1000, Immunovision). 
Plates were then blocked in ELISA blocking buffer (PBS and 1% BSA) 
for 2 h at room temperature. Mouse serum was diluted 1:40 with 
ELISA coating buffer (0.05 M sodium carbonate anhydrous/sodium 
hydrogen carbonate, pH 9.6), and incubated in the ELISA plates 
overnight at 4 °C. The plates were washed and goat anti-mouse 
IgG-AP antibodies (Alkaline Phosphatase, Southern Biotech) were 
added for 1 h at 37 °C. Phosphatase substrate (Sigma-Aldrich, S0942) 
was used as described by the manufacturer. The samples were read 
using the Infinite 200 PRO Tecan Microplate Reader (Tecan Group) 
at an absorbance of 405 nm and normalized to background absorb-
ance at 605 nm.

Hep-2/C. luciliae immunofluorescence
ANAs and dsDNA were determined using Hep-2 and Crithidia luciliae 
slides (both from NOVA Lite), respectively. Serum was diluted 1:40 for 
Hep-2 slides and 1:20 for Crithidia slides and stained as described by 
the manufacturer using donkey anti-mouse IgG Alexa-488 (Molecular 
Probes) as the secondary antibody. The slides were imaged using an 
Olympus IX71 inverted fluorescence microscope.

RNA-seq analysis
Total B cells were obtained from wild-type or kika mouse spleens 
and purified using the Mouse B Cell Isolation Kit (Miltenyi Biotec) 
and stimulated with anti-mouse IgM (10 µg ml−1) for 20 h. Total RNA 
was extracted using RNeasy Mini Kits (74104, Qiagen). Sequenc-
ing was performed using the NextSeq500 platform and analysis 
was conducted using the following R packages: limma, edgeR and 
enhanced volcano49. For the patient, type I IFN single-cell RNA-seq 
analysis was performed. PBMCs were isolated from frozen human 
samples as previously described50. Live cells were next purified by 
FACS using 7AAD and labelled with TotalSeq anti-human hashtags 
(BioLegend). The number of cells was determined and 10,000 cells 
per sample were run on the 10x Chromium platform (10x Genomics). 
Library preparation and sequencing were performed by The Bio-
medical Research Facility according to the manufacturer’s instruc-
tions for the Chromium Next GEM Single Cell 5′ Kit v2. The samples 
were sequenced using the NovaSeq 6000 (Illumina) system. The 
FASTQ files were aligned to the human GRCh38 reference genome 
using 10x Genomics Cell Ranger pipeline v.6.0.1. Statistical analysis, 
clustering and visualization were conducted using Seurat v.4.0.1 in 
the R environment.

Molecular dynamics simulations
Details of the computational modelling are provided in the Supple-
mentary Methods.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Extended Data Fig. 1 | Confirmation of paternity in trio of proband with TLR7 
de novo variant and methods for molecular modelling. (a) Peddy diagrams 
used to establish relatedness. Each red dot represents a child/parent pair (child 
mother and child father). The grey dot is a no-relatedness control. Coefficient of 
relatedness should be 0.5 for a parent-child pair. ibs0: the number of sites at which 
the 2 samples shared no alleles (should approach 0 for parent-child pairs). ibs2: 
the number of sites in which the child vs parent samples where both hom-ref, both 
het, or both hom-alt. Shared_hets: the number of sites at which both child and 
parent samples were hets. (b) Ancestry check using Peddy (proband and parents 
are purple dots). (c) Phylogenetic conservation of TLR7 variants. (d) Integrative 
Genomics Viewer (IGV) image of the Y264H TLR7 de novo variant. (e) TLR7 
structure 6IF5. Regions in red were restrained through all simulations with a 
harmonic restraint of force constant 5 kcal/mol/Å2, and correspond to residue 

numbers: 27-96, 116-179, 193-256, 281-297, 304-321, 327-346, 361-376, 385-403,  
412-427, 434-460, 476-499, 510-523, 534-548, 561-572, 591-602, 616-625, 646-656, 
671-681 and 699-835. (f) Guanosine and R848 illustrated with binding geometries 
from crystal structures 5GMF and 5GMH14. L1-L3 indicate ligand atoms used for 
Boresch restraints, which were restrained relative to the three depicted protein 
alpha carbons of residues F408, G379 and F325 (not to scale). Distances and angles 
in gold, and dihedrals in pink show the values for the 6DoF Boresch restraints. 
Additional geometric relationships between the restrained atoms, as measured 
from the starting structure, are shown in grey smaller print. Boresch dihedral 
restraints are relative to the two atoms connecting either side of the location of 
print. White hydrogen spheres and red oxygen spheres show the atoms used in 
the calculation for determining the number of waters within 3.5 Å of the tail region 
that each ligand interacted with.



Extended Data Fig. 2 | Tlr7 −/− spleen cells lack TLR7 expression. (a) Tlr7 
nucleotide and amino acid sequence in mice carrying a CRISPR/Cas9- 
generated deletion (Tlr7 −/−) and WT littermate (Tlr7 +/+). (b) Flow cytometric 
histograms of intracellular TLR7 expression on cells from 6-month-old mice of 

the indicated genotypes: plasmacytoid dendritic cells (pDC, CD19− CD11c+ 
SiglecH+ BST2+) and CD19+ B cells. Bars represent medians and each dot a single 
mouse. These results are representative of one experiment. One-way ANOVA 
with Tukey (b); Exact p values are shown.
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Extended Data Fig. 3 | Autoantibodies to ssDNA but not dsDNA are a feature 
of kika mice and are detectable by 6 wks of age. (a) Quantification of ANAs in 
12 wk-old kika mice by Hep-2 immunofluorescence (IF). (b) Proportion of 6 
month-old WT and kika mice positive for dsDNA according to Crithidia luciliae 
IF, and representative images (c) for each genotype. (d) Autoantibodies to DNA 
in serum from 4 wk-old (n = 10) and 6 wk-old (n = 9) wt or kika mice. (e) HEp-2 IF 
showing pattern and quantification of ANAs in 6 wk-old kika mice. (f) 

Mesoscale measurement of cytokines in serum from wt or kika mice (n = 20). 
(g) Dose-dependent response of TLR7 to guanosine (data averaged from two 
mice in biological triplicate). (h) Responsiveness of TLR7 to ssRNAs lacking 
uridine (ss41-L), with 6 to 10 uridines; or 9 uridines B-406-AS1 (data represent 
mean ± s.e.m. averaged from three mice in biological triplicates). Unpaired 
t-test (d, h); Mann-Whitney test (f). Exact p values are shown.



Extended Data Fig. 4 | Organ Pathology of kika mice. Observational report is summarized in supplementary table 4. Organs were collected from 3 mice per 
genotype. Histopathology and organ pathology was performed by the Australian Phenomics Network (APN).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Cellular phenotypes in blood and spleen from kika 
mice, TLR7-deficient mice, mixed chimeras and Yaa mice. (a) White blood 
cell (WBC) count in 18-wk old mice. (b, c) Flow cytometric plots and 
quantification. (b) Spleen T (CD3+):B (B220+) cell ratio from 12-wk old kika mice. 
(c) Age-associated B cells (ABC, B220+ CD21− CD23− CD19hi CD11c+) in blood 
from 18-wk-old kika mice. (d) Splenic marginal zone (MZ) B cells (CD19+ CD23− 
CD21+) in 12-wk kika mice. (e) Circulating T follicular cells (Tfo, CD4+ CXCR5+ 
PD1hi) and extrafollicular helper T cells (eTH, CD4+ CXCR5− PD1+ CXCR3+) in 
blood from 18-wk-old kika mice. (f) Plasmacytoid dendritic cellc (pDCs, CD3− 
CD19− MHCII+ CD11c+ CD11b- CD8− SiglecH+ BST2+) and pDC MFI of MHCII and 
SiglecH from 12-week-old kika mice. (g) Splenic germinal center B cells (GCB, 
CD19+ CD95+ BCL6+), ABC (B220+ CD21− CXCR5− CD19hi CD11c+), TFH (CD4+ 
CXCR5+ PD1hi), eTH (CD4+ CXCR5− PD1+ CXCR3+) and plasma cells (PC, CD138+ 

CD98+) from 24-wk TLR7-deficient mice. (h, i) Splenic cell subsets from mixed 
bone marrow chimeric mice containing a 1:1 ratio of control Tlr7+/+ CD45.1/
Tlr7+/+ CD45.2 or Tlr7+/+ CD45.1/Tlr7kik/kik CD45.2 bone marrow (h) and 100% 
mixed bone marrow (i) of each genotype. Subsets shown are CD4 effector 
(CD4+ FoxP3− CD44+), MZ (CD19+ CD23− CD21+), Treg (CD4+ FoxP3+) and CD45.1 
to CD45.2 reconstitution ratio, 22-weeks post-reconstitution. ( j) 
Autoantibodies to DNA and smRNP in serum from 100% chimeric mice model. 
(k) Splenic cell subsets from kika and Yaa mice. Bars represent medians and 
each dot a single mouse. These results are representative of one blood ADVIA 
analysis, two experiments for blood flow cytometry, four splenic phenotyping 
for kika mice and one for TLR7 deletion mice, and one experiment for chimera 
analysis. One-way ANOVA with Tukey (a–g, k); Two-way ANOVA (h); 
Mann-Whitney (i); Unpaired t-test ( j); Exact p values are shown.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Rnaseh2b hemizygosity does not cause a cellular 
phenotype. (a) Rnaseh2b cDNA sequence from Rnaseh2b-deletion mice, 
highlighting the single nucleotide CRISPR/Cas9-generated deletion leading to 
a frame-shift after amino acid residue Q170 and stop codon 4 amino acids 
downstream. (b, c) Flow cytometric quantification of splenic germinal center B 
cells (GCB, CD19+ CD95+ BCL6+), age-associated B cells (ABC, B220+ CD21− 
CXCR5− CD19hi CD11c+), T follicular helper cells (TFH, CD4+ CXCR5+ PD1hi), 
extrafollicular helper T cells (eTH, CD4+ CXCR5− PD1+ CXCR3+) and plasma cells 
(PC, CD138+ CD98+) (b) in 12 week-old mice carrying a heterozygous deletion in 
Rnaseh2b and (c) in 12-wk-old mice with heterozygous deletion in Rnaseh2b 
crossed to the kika mice. (d) Autoantibodies to DNA, RNA and smRNP in serum 

from mice of indicated genotypes. (e) Representative photo of time-mated 
embryos from Rnaseh2b−/+ breeders. (f) Western blot of RNASEH2B in 
time-mated embryo lysates. (g) KASP genotyping results of representative 
time-mated embryos. (h) Breeding record of Rnaseh2b−/+ crossed to 
Rnaseh2b−/+ mice. (i) Type 1 IFN signature of Rnaseh2b+/− Tlr7kik/+ double 
heterozygous female mice compared to Tlr7kik/+ alone, Rnaseh2b+/− alone or 
Trex1−/− mice as positive controls. Bars represent medians and each dot a single 
mouse. Data is representative of two experiments. Embryos were collected 
from two time-mating breeding set ups (n = 18 embryo collected from two pair 
breeders). One-way ANOVA with Tukey (b–d); Chi-square test (h); Exact p values 
are shown.
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Extended Data Fig. 7 | Kika mice have normal responses to TLR7 signalling 
and CD93 is expressed on TLR7 stimulated B cells. (a–c) Flow cytometric 
analysis of (a) Mean CD93+ cells derived from CD93− sorted splenic B cells 
stimulated with R837, a-IgM or R837 + a-IgM for 72-hours from kika and control 
mice. (b) FACS sorted bone marrow immature B cells (B220int CD93+) cultured 
with or without α-IgM for 72 h, from male mice of the indicated genotypes. (c) 
Mean survival count of MACS purified splenic B cells stimulated with R837, 

a-IgM or R837 + a-IgM for 72-hours from kika mice and control mice. (c) 
Percentage of bone marrow (BM) immature B cells (CD93+ B220int) in 12-35-wk 
kika and control mice. (a, b, d) Bars represent means ± s.d. and (d) each dot a 
single mouse. These results are representative of one experiment for CD93 
upregulation and BM immature flow cytometry, four splenic B cell cultures 
purified using MACS bead selection and one BM analysis. Two-way ANOVA with 
Tukey (a, b) and Sidak (d); Exact p values are shown.



Extended Data Fig. 8 | Myd88 deficiency rescues kika’s immune cell 
phenotype and splenic cellularity. (a) Flow cytometric quantification of 
splenic cell subsets (percentage and total number) and total cellularity in 12 
wk-old mice of the indicated genotypes (Tlr7 +/+(Y)Myd88 +/+ n = 12, 
Tlr7 kik/+(Y)Myd88 +/+ n = 11, Tlr7 kik/+(Y)Myd88 −/− n = 4). Subsets include: germinal 
center B cells (GCB, CD19+ CD95+ BCL6+), T follicular helper cells (TFH, CD4+ 

CXCR5+ PD1hi), percentage of ABC (B220+, CD21−, CXCR5− CD19hi CD11c+), 
extrafollicular helper cells (eTH, CD4+ CXCR5− PD1+ CXCR3+), plasma cells  
(PC, CD138+ CD98+), CD4 effector/memory T cells (CD4+ FoxP3− CD44+)  
Male mice = grey and female mice = white. Bars represent medians and each dot 
a single mouse. One-way ANOVA with Tukey; Exact p values are shown.
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Extended Data Fig. 9 | TLR7 and MYD88 expression is indistinguishable 
between female patients with SLE and healthy controls (HC). (a) Flow 
cytometric analysis and quantification of DN B cells, pDCs and ABCs phenotype 
in PBMCs from healthy controls (n = 6) and female patients with SLE (n = 8). (b) 

Quantification of TLR7 and MYD88 protein in HC and SLE. (c) Quantification of 
CD25 expression after TLR7 stimulation among HC (n = 8), autoimmune control 
(AC) (n = 1), age-matched autoimmune control (AMAC) (n = 1) and A.II.1 (n = 1). 
Unpaired t-test (a, b); One-way ANOVA with Tukey (c); Exact p values are shown.
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