1,026 research outputs found

    NASA follow-on to the Bangladesh Agro-Climatic Environmental Monitoring Project

    Get PDF
    The NASA responsibility and activities for the follow-on to the original Agro-Climatic Environmental Monitoring Project (ACEMP) which was completed during 1987 is described. Five training sessions which comprise the NASA ACEMP follow-on are: Agrometeorology, Meteorology of Severe Storms Using GEMPAK, Satellite Oceanography, Hydrology, and Meteorology with TOVS. The objective of the follow-on is to train Bangladesh Government staff in the use of satellite data for remote sensing applications. This activity also encourages the scientific connection between NASA/Goddard Space Flight Center and The Bangladesh Space and Remote Sensing Organization (SPARRSO)

    CG J1720-67.8: A Detailed Analysis of Optical and Infrared Properties of a New Ultracompact Group of Galaxies

    Get PDF
    We present here optical spectroscopy and BVRJHK(s) photometry of the recently discovered ultra-compact group of galaxies CG J1720-67.8. This work represents a considerable extension of the preliminary results we presented in a previous paper. Despite the complicated morphology of the group, a quantitative morphological classification of the three brightest members of the group is attempted based on photometric analysis. We find that one galaxy is consistent with a morphological type S0, while the other two are most probably late-type spirals that are already losing their identity due tothe interaction process. Information on the star formation activity and dust content derived from both spectroscopic data and optical and near-infrared colors are complemented with a reconstruction of far-infrared (FIR) maps from IRAS raw data. Enhanced star formation activity is revealed in all the group's members, including the early-type galaxy and the extended tidal tail, along which several tidal dwarf galaxy candidates are identified. The metallicity of the gaseous component is investigated and photoionization models are applied to the three main galaxies of the group, while a detailed study of the tidal dwarf candidates will appear in a companion paper. Subsolar metal abundances are found for all the three galaxies, the highest values being shown by the early-type galaxy (Z ~ 0.5 Zsolar).Comment: Accepted for publication in The Astrophysical Journa

    Head-on collision of ultrarelativistic charges

    Full text link
    We consider the head-on collision of two opposite-charged point particles moving at the speed of light. Starting from the field of a single charge we derive in a first step the field generated by uniformly accelerated charge in the limit of infinite acceleration. From this we then calculate explicitly the burst of radiation emitted from the head-on collision of two charges and discuss its distributional structure. The motivation for our investigation comes from the corresponding gravitational situation where the head-on collision of two ultrarelativistic particles (black holes) has recently aroused renewed interest.Comment: 4 figures, uses the AMSmat

    A dense disk of dust around the born-again Sakurai's object

    Get PDF
    In 1996, Sakurai's object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star which has remained embedded in this expanding high optical depth envelope. The new observations, reported here, are used to study the morphology of the circumstellar dust in order to investigate the hypothesis that Sakurai's Object is surrounded by a thick spherical envelope of dust. We have obtained unprecedented, high-angular resolution spectro-interferometric observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the dust envelope of Sakurai's object. We report the discovery of a unexpectedly compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified disk to constrain its geometric and physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75+/-3 degree with a large scale height of 47+/-7 AU. The dust mass of the disk is estimated to be 6 10^{-5} solar mass. The major axis of the disk (132+/-3 degree) is aligned with an asymmetry seen in the old PN that was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurai's object was already at work when the old PN formed.Comment: A&A Letter, accepte

    Successful application of PSF-R techniques to the case of the globular cluster NGC 6121 (M 4)

    Get PDF
    Context. Precise photometric and astrometric measurements on astronomical images require an accurate knowledge of the point spread function (PSF). When the PSF cannot be modelled directly from the image, PSF-reconstruction techniques become the only viable solution. So far, however, their performance on real observations has rarely been quantified. Aims. In this Letter, we test the performance of a novel hybrid technique, called PRIME, on Adaptive Optics-assisted SPHERE/ZIMPOL observations of the Galactic globular cluster NGC 6121. Methods. PRIME couples PSF-reconstruction techniques, based on control-loop data and direct image fitting performed on the only bright point-like source available in the field of view of the ZIMPOL exposures, with the aim of building the PSF model. Results. By exploiting this model, the magnitudes and positions of the stars in the field can be measured with an unprecedented precision, which surpasses that obtained by more standard methods by at least a factor of four for on-axis stars and by up to a factor of two on fainter, off-axis stars. Conclusions. Our results demonstrate the power of PRIME in recovering precise magnitudes and positions when the information directly coming from astronomical images is limited to only a few point-like sources and, thus, paving the way for a proper analysis of future Extremely Large Telescope observations of sparse stellar fields or individual extragalactic objects

    The Ever Changing Circumstellar Nebula Around UW Centauri

    Get PDF
    We present new images of the reflection nebula surrounding the R Coronae Borealis Star, UW Cen. This nebula, first detected in 1990, has changed its appearance significantly. At the estimated distance of UW Cen, this nebula is approximately 0.6 ly in radius so the nebula cannot have physically altered in only 8 years. Instead, the morphology of the nebula appears to change as different parts are illuminated by light from the central star modulated by shifting thick dust clouds near its surface. These dust clouds form and dissipate at irregular intervals causing the well-known declines in the R Coronae Borealis (RCB) stars. In this way, the central star acts like a lighthouse shining through holes in the dust clouds and lighting up different portions of the nebula. The existence of this nebula provides clues to the evolutionary history of RCB stars possibly linking them to the Planetary Nebulae and the final helium shell flash stars.Comment: To be published in ApJ Letters. 5 pages, 3 figures (2 in color

    Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics

    Get PDF
    Amorphous silicon (a-Si) is a widely studied noncrystalline material, and yet the subtle details of its atomistic structure are still unclear. Here, we show that accurate structural models of a-Si can be obtained using a machine-learning-based interatomic potential. Our best a-Si network is obtained by simulated cooling from the melt at a rate of 1011 K/s (that is, on the 10 ns time scale), contains less than 2% defects, and agrees with experiments regarding excess energies, diffraction data, and 29Si NMR chemical shifts. We show that this level of quality is impossible to achieve with faster quench simulations. We then generate a 4096-atom system that correctly reproduces the magnitude of the first sharp diffraction peak (FSDP) in the structure factor, achieving the closest agreement with experiments to date. Our study demonstrates the broader impact of machine-learning potentials for elucidating structures and properties of technologically important amorphous materials

    Concept and optical design of the cross-disperser module for CRIRES

    Get PDF
    This is the peer reviewed version of the following article: Oliva, Ernesto, A. Tozzi, D. Ferruzzi, L. Origlia, A. Hatzes, R. Follert, T. Loewinger et al. "Concept and optical design of the cross-disperser module for CRIRES+." In SPIE Astronomical Telescopes+ Instrumentation, pp. 91477R-91477R. International Society for Optics and Photonics, 2014, which has been published in final form at 10.1117/12.2054381

    V605 Aql: The Older Twin of Sakurai's Object

    Get PDF
    New optical spectra have been obtained with VLT/FORS2 of the final helium shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models suggest that this star is experiencing a very late thermal pulse. The evolution to a cool luminous giant and then back to a compact hot star takes place in only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58, has evolved from Teff_{eff}\sim5000 K in 1921 to \sim95,000 K today. There are indications that the new FF star, Sakurai's Object (V4334 Sgr), which appeared in 1996, is evolving along a similar path. The abundances of Sakurai's Object today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis (RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even though the star is not directly detected. Therefore, we may be seeing the spectrum in light scattered around the edge of a thick torus of dust seen edge-on. In the present state of evolution of V605 Aql, we may be seeing the not too distant future of Sakurai's Object.Comment: 12 pages, 1 figure, ApJ Letters in pres
    corecore