1,838 research outputs found

    Time-distance helioseismology: Sensitivity of f-mode travel times to flows

    Full text link
    Time-distance helioseismology has shown that f-mode travel times contain information about horizontal flows in the Sun. The purpose of this study is to provide a simple interpretation of these travel times. We study the interaction of surface-gravity waves with horizontal flows in an incompressible, plane-parallel solar atmosphere. We show that for uniform flows less than roughly 250 m s−1^{-1}, the travel-time shifts are linear in the flow amplitude. For stronger flows, perturbation theory up to third order is needed to model waveforms. The case of small-amplitude spatially-varying flows is treated using the first-order Born approximation. We derive two-dimensional Fr\'{e}chet kernels that give the sensitivity of travel-time shifts to local flows. We show that the effect of flows on travel times depends on wave damping and on the direction from which the observations are made. The main physical effect is the advection of the waves by the flow rather than the advection of wave sources or the effect of flows on wave damping. We compare the two-dimensional sensitivity kernels with simplified three-dimensional kernels that only account for wave advection and assume a vertical line of sight. We find that the three-dimensional f-mode kernels approximately separate in the horizontal and vertical coordinates, with the horizontal variations given by the simplified two-dimensional kernels. This consistency between quite different models gives us confidence in the usefulness of these kernels for interpreting quiet-Sun observations.Comment: 34 pages, accepted to Astrophysical Journa

    Acoustic wave propagation in the solar sub-photosphere with localised magnetic field concentration: effect of magnetic tension

    Get PDF
    Aims: We analyse numerically the propagation and dispersion of acoustic waves in the solar-like sub-photosphere with localised non-uniform magnetic field concentrations, mimicking sunspots with various representative magnetic field configurations. Methods: Numerical simulations of wave propagation through the solar sub-photosphere with a localised magnetic field concentration are carried out using SAC, which solves the MHD equations for gravitationally stratified plasma. The initial equilibrium density and pressure stratifications are derived from a standard solar model. Acoustic waves are generated by a source located at the height corresponding approximately to the visible surface of the Sun. By means of local helioseismology we analyse the response of vertical velocity at the level corresponding to the visible solar surface to changes induced by magnetic field in the interior. Results: The results of numerical simulations of acoustic wave propagation and dispersion in the solar sub-photosphere with localised magnetic field concentrations of various types are presented. Time-distance diagrams of the vertical velocity perturbation at the level corresponding to the visible solar surface show that the magnetic field perturbs and scatters acoustic waves and absorbs the acoustic power of the wave packet. For the weakly magnetised case, the effect of magnetic field is mainly thermodynamic, since the magnetic field changes the temperature stratification. However, we observe the signature of slow magnetoacoustic mode, propagating downwards, for the strong magnetic field cases

    The five-minute oscillations: What's left to be done

    Get PDF
    Current observational methods for studying these oscillations at large horizontal wavenumbers are discussed in detail and several two dimensional power spectra obtained with a CID camera on the main spectrograph of the McMath telescope at Kitt Peak National Observatory are described. The best-resolved observations of the p-mode obtained at chromospheric elevations are also presented. Recent progress in studies of the p-modes at low wavenumbers with full-disk velocity detection schemes is summarized. These full-disk observations of radial and low-degree non-radial modes were shown to place severe constraints on the theoretical calculation of solar interior structure. Progress in making fully-consistent solar models which fit both the high- and low-wave number observations is described. Finally, the observational and theoretical improvements that are necessary for further progress in solar seismology are summarized

    Stress relaxation behind elastic shock waves in rocks

    Get PDF
    The amplitude of elastic shock waves in Arkansas novaculite is observed to decrease at a rate of ≈3.3 kb/mm for shock propagation path lengths of 6 to 12 mm. The amplitude of the final shock state in the experiments is held near the 155-kb pressure level. A total variation of elastic shock wave amplitude (Hugoniot elastic limit) of ≈40 kb (from 110 to 70 kb) is observed in ≈1 cm of shock travel. The intrinsic attenuation term in a constitutive equation for a stress-relaxing elastoplastic material is found to account for ≈90% of the observed peak pressure attenuation of the elastic shock, as compared with the ≈10% which is predicted from the instantaneous elastic shock profile. The Hugoniot elastic limits of Sioux and Eureka quartzites, which were not as intensively studied as the Arkansas novaculite, are also found to decrease with shock propagation path length
    • …
    corecore