765 research outputs found

    Telecom 2-B and 2-C (TC2B and TC2C)

    Get PDF
    The DSN (Deep Space Network) mission support requirements for Telecom 2-B and 2-C (TC2B and TC2C) are summarized. These Telecom missions will provide high-speed data link applications, telephone, and television service between France and overseas territories as a follow-on to TC2A. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility

    Structure of a Pheromone Receptor-Associated MHC Molecule with an Open and Empty Groove

    Get PDF
    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide–binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I–binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8–10-mer class I–binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC–binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs

    Telecom 2-A (TC2A)

    Get PDF
    The DSN (Deep Space Network) mission support requirements for Telecom 2-A (TC2A) are summarized. The Telecom 2-A will provide high-speed data link applications, telephone, and television service between France and overseas territories. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility

    Optimized Protocol for Imaging Cleared Neural Tissues Using Light Microscopy

    Get PDF
    Understanding physical and chemical processes at an organismal scale is a fundamental goal in biology. While science is adept at explaining biological phenomena at both molecular and cellular levels, understanding how these processes translate to organismal functions remains a challenging problem. This issue is particularly significant for the nervous system where cell signaling and synaptic activities function in the context of broad neural networks. Recent progress in tissue clearing technologies lessens the barriers that previously prevented the study of large tissue samples while maintaining molecular and cellular resolution. While these new methods open vast opportunities and exciting new questions, the logistics of analyzing cellular processes in intact tissue have to be carefully considered. In this protocol, we outline a procedure to rapidly image intact brain tissue up to thousands of cubic millimeters. This experimental pipeline involves three steps: tissue clearing, tissue imaging, and data analysis. In an attempt to streamline the process for researchers entering this field, we address important considerations for each of these stages and describe an integrated solution to image intact biological tissues. Hopefully, this optimized protocol will lower the barrier of implementing high-resolution tissue imaging and facilitate the investigations of mesoscale questions at molecular and cellular resolution

    Vertical structure of aerosols and water vapor over West Africa during the African monsoon dry season

    Get PDF
    We present observations of tropospheric aerosol and water vapor transport over West Africa and the associated meteorological conditions during the AMMA SOP-0 dry season experiment, which was conducted in West Africa in January–February 2006. This study combines data from ultra-light aircraft (ULA)-based lidar, airborne in-situ aerosol and gas measurements, standard meteorological measurements, satellite-based aerosol measurements, airmass trajectories, and radiosonde measurements. At Niamey (13.5° N, 2.2° E) the prevailing surface wind (i.e. Harmattan) was from the northeast bringing dry dusty air from the Sahara desert. High concentrations of mineral dust aerosol were typically observed from the surface to 1.5 or 2 km associated with the Saharan airmasses. At higher altitudes the prevailing wind veered to the south or southeast bringing relatively warm and humid airmasses from the biomass burning regions to the Sahel (<10° N). These elevated layers had high concentrations of biomass burning aerosol and were typically observed between altitudes of 2–5 km. Meteorological analyses show these airmasses were advected upwards over the biomass burning regions through ascent in Inter-Tropical Discontinuity (ITD) zone. Aerosol vertical profiles obtained from the space-based lidar CALIOP onboard CALIPSO during January 2007 also showed the presence of dust particles (particle depolarization (δ)~30%, lidar Ångström exponent (<i>LAE</i>)<0, aerosol backscatter to extinction ratio (<i>BER</i>): 0.026~0.028 sr<sup>−1</sup>) at low levels (<1.5 km) and biomass burning smoke aerosol (δ<10%, <i>LAE</i>: 0.6~1.1, <i>BER</i>: 0.015~0.018 sr<sup>−1</sup>) between 2 and 5 km. CALIOP data indicated that these distinct continental dust and biomass burning aerosol layers likely mixed as they advected further south over the tropical Atlantic Ocean, as indicated an intermediate values of δ (10~17%), <i>LAE</i> (0.16~0.18) and <i>BER</i> (0.0021~0.0022 sr<sup>−1</sup>)

    Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations.

    Get PDF
    International audienceAerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean basin or land stations in the region from multi-year ground-based AERONET observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) dataset is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This dataset covers the 17-yr period 1996-2012 with most data being from 2003-2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent < 1.0 in order to study absorption by carbonaceous aerosols. The SSA dataset includes AERONET level-2 products. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94-0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89-0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate a possible East-West gradient, with higher values over the eastern basin (AAEEast = 1.39/AAEWest = 1.33). The North-South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols

    Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement

    Get PDF
    Rasmussen encephalitis (RE) is a rare but severe immune-mediated brain disorder leading to unilateral hemispheric atrophy, associated progressive neurological dysfunction and intractable seizures. Recent data on the pathogenesis of the disease, its clinical and paraclinical presentation, and therapeutic approaches are summarized. Based on these data, we propose formal diagnostic criteria and a therapeutic pathway for the management of RE patient

    Genus Hydrangea: diversity of pigments and phenolic compounds

    Get PDF
    The most important collection of Hydrangea in Europe is located in Angers (France). It consists of over 700 germplasm accessions distributed in 13 species. Originating from Asia and America, they were introduced in Europe in the 18th century for their ornamental interest but medicinal properties may also be found in this genus since extracts from H. macrophylla are already described as exhibiting anti-diabetic [1], lipid lowering and anti-oxidative [2], anti-allergic [3] and antimalarial activities [4]. Management of the collection requires botanical, genetic and biochemical studies allowing good, reliable characterization of species, subspecies and varieties. In this context, the biochemical characterization of the inflorescences was undertaken to evaluate the intra and interspecific diversities of pigments and other phenolic compounds. Inflorescences are generally white, except for three species: H. macrophylla, H. involucrata and H .aspera which exhibit rose or blue flowers. Among them only H. macrophylla was previously studied for sepal color variation [5]. In this study, 80 accessions were analyzed by means of HPLC/DAD, LC-MS/MS and NMR experiments: 46 H. macrophylla, 13 H. aspera, 6 H. involucrata, 5 H. paniculata, 3 H. quercifolia, 2 H. arborescens, 2 H. anomala, 2 H. heteromala, 1 H. scandens, 1 H. seemannii and 1 H. integrifolia. About 50 phenolic derivatives - essentially phenolic acids and flavonols (quercetin and kaempferol) - and 20 anthocyanins could be identified. The contents of pigments and other phenolic compounds appeared as very diverse both qualitatively and quantitatively and some compounds could be identified as chemospecific. On this basis, a statistical study using Principal Component Analysis allowed a clear distinction between both species and subspecies. Besides, different biological evaluations of crude extracts and secondary metabolites isolated from Hydrangea sp will also be discussed
    • …
    corecore