152 research outputs found

    Use of an electromagnetic colonoscope to assess maneuvers associated with cecal intubation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Safe and effective colonoscopy is aided by the use of endoscopic techniques and maneuvers (ETM) during the examination including patient repositioning, stiffening of the endoscope and abdominal pressure.</p> <p>Aim</p> <p>To better understand the use and value of ETM during colonoscopy by using a device that allows real-time imaging of the colonoscope insertion shaft.</p> <p>Methods</p> <p>The use of ETM during colonoscopy and their success was recorded. Experienced colonoscopists and endoscopy assistants used a commercially available electromagnetic (EM) transmitter and a special adult variable stiffness instrument with 12 embedded sensors to examine 46 patients. In 5 of these a special EM probe passed through the instrument channel of a standard pediatric variable stiffness colonoscope was used instead of the EM colonoscope.</p> <p>Results</p> <p>Thirty-nine men and 7 women with a mean age of 64 years (range 33–90) were studied. The cecum was intubated in 93.5% (43/46). The mean time to reach the cecum was 10.6 minutes (range 3–25). ETM were used a total of 174 times in 41 of the patients to assist with cecal intubation. When ETM were required to reach the cecum, and the cecum was intubated, an average of 3.82 ETM/patient was used. While ETM were used most often when the tip of the colonoscope was in the left side of the colon (rectum 5.0%, sigmoid colon 20.7%, descending colon 5.0%, and splenic flexure 11.6%), when the instrument was in the transverse colon (14.8%), hepatic flexure (20.7%) and ascending colon (19.8%) the use of ETM was also required. When the colonoscope tip was in the transverse colon, hepatic flexure and ascending colon, ETM success rates were less (61.1%, 52.0%, and 41.7% respectively) compared to the left colon success rates (rectum 83.3%, sigmoid colon 84.0%, descending colon 100%, and splenic flexure 85.7%).</p> <p>Conclusion</p> <p>The EM colonoscope allows imaging of the insertion shaft without fluoroscopy and is a useful device for evaluating the efficacy of ETM. ETM are important tools of the colonoscopist and are used most often in the left colon where they are most effective.</p

    Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss: Links With Metabolic and Low-Grade Inflammation Markers

    Get PDF
    International audienceOBJECTIVE Obesity alters gut microbiota ecology and associates with low-grade inflammation in humans. Roux-en-Y gastric bypass (RYGB) surgery is one of the most efficient procedures for the treatment of morbid obesity resulting in drastic weight loss and improvement of metabolic and inflammatory status. We analyzed the impact of RYGB on the modifications of gut microbiota and examined links with adaptations associated with this procedure. RESEARCH DESIGN AND METHODS Gut microbiota was profiled from fecal samples by real-time quantitative PCR in 13 lean control subjects and in 30 obese individuals (with seven type 2 diabetics) explored before (M0), 3 months (M3), and 6 months (M6) after RYGB. RESULTS Four major findings are highlighted: 1) Bacteroides/Prevotella group was lower in obese subjects than in control subjects at MO and increased at M3. It was negatively correlated with corpulence, but the correlation depended highly on caloric intake; 2) Escherichia coli species increased at M3 and inversely correlated with fat mass and leptin levels independently of changes in food intake; 3) lactic acid bacteria including Lacto-bacillus/Leuconostoc/Pediococcus group and Bifidobacterium genus decreased at M3; and 4) Faecalibacterium prausnitzii species was lower in subjects with diabetes and associated negatively with inflammatory markers at MO and throughout the follow-up after surgery independently of changes in food intake. CONCLUSIONS These results suggest that components of the dominant gut microbiota rapidly adapt in a starvation-like situation induced by RYGB while the F. prausnitzii species is directly linked to the reduction in low-grade inflammation state in obesity and diabetes independently of calorie intake. Diabetes 59:3049-3057, 201

    Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients

    Get PDF
    Background: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. Methods and Findings: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01). We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p = 0.0197) or anorexic patients (p = 0.0332). The M. smithii concentration was much higher in anorexic patients than in the lean population (p = 0.0171). Conclusions: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population

    Preclinical electrogastrography in experimental pigs

    Get PDF
    Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology

    Effects and Action Mechanisms of Berberine and Rhizoma coptidis on Gut Microbes and Obesity in High-Fat Diet-Fed C57BL/6J Mice

    Get PDF
    Gut microbes play important roles in regulating fat storage and metabolism. Rhizoma coptidis (RC) and its main active compound, berberine, have either antimicrobial or anti-obesity activities. In the present study, we hypothesize that RC exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes and berberine may be a key compound of RC. Gut microbes and glucose and lipid metabolism in high-fat diet-fed C57BL/6J (HFD) mice in vivo are investigated after RC and berberine treatments. The results show that RC (200 mg/kg) and berberine (200 mg/kg) significantly lower both body and visceral adipose weights, and reduce blood glucose and lipid levels, and decrease degradation of dietary polysaccharides in HFD mice. Both RC and berberine significantly reduce the proportions of fecal Firmicutes and Bacteroidetes to total bacteria in HFD mice. In the trial ex vivo, both RC and berberine significantly inhibit the growth of gut bacteria under aerobic and anaerobic conditions. In in vitro trials, both RC and berberine significantly inhibit the growth of Lactobacillus (a classical type of Firmicutes) under anaerobic conditions. Furthermore, both RC and berberine significantly increase fasting-induced adipose factor (Fiaf, a key protein negatively regulated by intestinal microbes) expressions in either intestinal or visceral adipose tissues. Both RC and berberine significantly increase mRNA expressions of AMPK, PGC1α, UCP2, CPT1α, and Hadhb related to mitochondrial energy metabolism, which may be driven by increased Fiaf expression. These results firstly suggest that antimicrobial activities of RC and berberine may result in decreasing degradation of dietary polysaccharides, lowering potential calorie intake, and then systemically activating Fiaf protein and related gene expressions of mitochondrial energy metabolism in visceral adipose tissues. Taken together, these action mechanisms may contribute to significant anti-obesity effects. Findings in the present study also indicate that pharmacological regulation on gut microbes can develop an anti-obesity strategy

    Translational research into gut microbiota: new horizons on obesity treatment: updated 2014

    Get PDF
    Obesity is currently a pandemic of worldwide proportions affecting millions of people. Recent studies have proposed the hypothesis that mechanisms not directly related to the human genome could be involved in the genesis of obesity, due to the fact that, when a population undergoes the same nutritional stress, not all individuals present weight gain related to the diet or become hyperglycemic. The human intestine is colonized by millions of bacteria which form the intestinal flora, known as gut flora. Studies show that lean and overweight human may present a difference in the composition of their intestinal flora; these studies suggest that the intestinal flora could be involved in the development of obesity. Several mechanisms explain the correlation between intestinal flora and obesity. The intestinal flora would increase the energetic extraction of non-digestible polysaccharides. In addition, the lipopolysaccharide from intestinal flora bacteria could trigger a chronic sub-clinical inflammatory process, leading to obesity and diabetes. Another mechanism through which the intestinal flora could lead to obesity would be through the regulation of genes of the host involved in energy storage and expenditure. In the past five years data coming from different sources established causal effects between intestinal microbiota and obesity/insulin resistance, and it is clear that this area will open new avenues of therapeutic to obesity, insulin resistance and DM2

    Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Get PDF
    Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered

    Advances in short bowel syndrome: an updated review

    Full text link
    Short bowel syndrome (SBS) continues to be an important clinical problem due to its high mortality and morbidity as well as its devastating socioeconomic effects. The past 3 years have witnessed many advances in the investigation of this condition, with the aim of elucidating the cellular and molecular mechanisms of intestinal adaptation. Such information may provide opportunities to exploit various factors that act as growth agents for the remaining bowel mucosa and may suggest new therapeutic strategies to maintain gut integrity, eliminate dependence on total parenteral nutrition, and avoid the need for intestinal transplantation. This review summarizes current research on SBS over the last few years.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47168/1/383_2005_Article_1500.pd

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
    • 

    corecore